scholarly journals Night-time chemistry of biomass burning emissions in urban areas: A dual mobile chamber study

2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

Abstract. Residential biomass burning for heating purposes is an important source of air pollutants during winter. Here we test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through oxidation of the emitted organic vapors by the nitrate (NO3) radical produced during the reaction of ozone and nitrogen oxides. We use a mobile dual smog chamber system which allows the study of chemical aging of ambient air against a control reference. Ambient urban air sampled during a wintertime campaign during night-time periods with high concentrations of biomass burning organic aerosol was used as the starting point of the aging experiments. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO3 radical production and aging), while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20–70 %. The oxygen-to-carbon ratio of the OA increased on average by 50 % and the mass spectra of the produced OA was quite similar to the oxidized OA mass spectra reported during winter in urban areas. Further, good correlation was found for the OA mass spectra between the ambient-derived emissions in this study and the nocturnal aged laboratory-derived biomass burning emissions from previous work. Concentrations of NO3 radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.1–3.2 μg m−3 of organic nitrate in the aerosol phase. These results strongly indicate that the OA in biomass burning plumes can chemically evolve rapidly even during wintertime periods with low photochemical activity.

2021 ◽  
Vol 21 (19) ◽  
pp. 15337-15349
Author(s):  
Spiro D. Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John K. Kodros ◽  
Christina Vasilakopoulou ◽  
...  

Abstract. Residential biomass burning for heating purposes is an important source of air pollutants during winter. Here we test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through oxidation of the emitted organic vapors by the nitrate (NO3) radical produced during the reaction of ozone and nitrogen oxides. We use a mobile dual smog chamber system which allows the study of chemical aging of ambient air against a control reference. Ambient urban air sampled during a wintertime campaign during nighttime periods with high concentrations of biomass burning emissions was used as the starting point for the aging experiments. Biomass burning organic aerosol (OA) was, on average, 70 % of the total OA at the beginning of our experiments. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO3 radical production and aging), while the second chamber was used as a reference. Following the injection of ozone, rapid OA formation was observed in all experiments, leading to increases in the OA concentration by 20 %–70 %. The oxygen-to-carbon ratio of the OA increased on average by 50 %, and the mass spectra of the produced OA was quite similar to the oxidized OA mass spectra reported during winter in urban areas. Furthermore, good correlation was found for the OA mass spectra between the ambient-derived emissions in this study and the nocturnal aged laboratory-derived biomass burning emissions from previous work. Concentrations of NO3 radicals as high as 25 ppt (parts per trillion) were measured in the perturbed chamber, with an accompanying production of 0.1–3.2 µg m−3 of organic nitrate in the aerosol phase. Organic nitrate represented approximately 10 % of the mass of the secondary OA formed. These results strongly indicate that the OA in biomass burning plumes can chemically evolve rapidly even during wintertime periods with low photochemical activity.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

<p>Biomass burning including residential heating, agricultural fires, prescribed burning, and wildfires is a major source of gaseous and particulate pollutants in the atmosphere. Although, important changes in the size distributions and the chemical composition of the biomass burning aerosol during daytime chemistry have been observed, the corresponding changes at nighttime or in winter where photochemistry is slow, have received relatively little attention. In this study, we tested the hypothesis that nightime chemistry in biomass burning plumes can be rapid in urban areas using a dual smog chamber system.</p><p> </p><p>Ambient urban air during winter nighttime periods with high concentrations of ambient biomass burning organic aerosol is used as the starting point. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO<sub>3</sub> production and aging) while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20-70%. The oxygen to carbon ratio of the OA increased by 50% on average and the mass spectra of the produced OA was quite similar to that of the oxidized OA mass spectra reported during winter in urban areas. Good correlation was also observed with the produced mass spectra from nocturnal aging of laboratory biomass burning emissions showing the strong contribution of biomass burning emissions in the SOA formation during cold nights with high biomass burning activities. Concentrations of NO<sub>3</sub> radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.2-1.2 μg m<sup>-3</sup> of organic nitrate. These results strongly indicate that the OA in biomass burning plumes can evolve rapidly even during wintertime periods with low photochemical activity.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 491
Author(s):  
Mónica Ivonne Arias-Montoya ◽  
Rebecca López-Márquez ◽  
Mario Alfonso Murillo-Tovar ◽  
Jorge Antonio Guerrero-Alvarez ◽  
Josefina Vergara-Sánchez ◽  
...  

Atmospheric particles with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) were collected at two sites located in the urban area of the city of Cuernavaca (Morelos) during a season when a large number of forest fires occurred. Three dicarboxylic acids (malonic, glutaric and succinic) and levoglucosan were analyzed by liquid chromatography coupled with mass spectrometry (ESI-Q-TOF) and soluble potassium (K+) was analyzed by ion chromatography. The concentration of PM2.5 increased on the days when the highest number of forest fires occurred. A strong correlation was observed between levoglucosan and K+, confirming the hypothesis that both are tracers of biomass burning (r = 0.57, p < 0.05). Levoglucosan (average 367.6 ng m−3, Site 2) was the most abundant compound, followed by succinic acid (average 101.7 ng m−3, Site 2), glutaric acid (average 63.2 ng m−3, Site 2), and malonic acid (average 46.9 ng m−3, Site 2), respectively. The ratio of C3/C4 concentrations ranged from 0.5 to 1.2, with an average of 0.8, which suggests great photochemical activity in the Cuernavaca atmosphere. The ratio of K+/levoglucosan concentrations (0.44) indicates that open fires are the main source of these tracers. The positive correlations between PM2.5 and levoglucosan and succinic and malonic acids suggest that such compounds are contributing to secondary organic aerosol particle formation.


2020 ◽  
Author(s):  
John Kodros ◽  
Dimitris Papanastasiou ◽  
Marco Paglione ◽  
Mauro Masiol ◽  
Stefania Squizzato ◽  
...  

&lt;p&gt;Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially affecting both climate and human health. A considerable body of evidence has established that OOA is readily produced in the presence of daylight, thus leading to the association of high concentrations of OOA in the summer or mid-afternoon. However, this current mechanistic understanding fails to explain elevated OOA concentrations during night or wintertime periods of low photochemical activity, thus leading atmospheric models to under predict OOA concentrations by a factor of 3-5. Here we show that fresh emissions from biomass burning rapidly forms OOA in the laboratory over a few hours and without any sunlight. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. To estimate the contribution of nocturnally aged OOA in the ambient atmosphere, we incorporate this nighttime-aging mechanism into a chemical-transport model and find that over much of the United States greater than 75% of the OOA formed from fresh biomass burning emissions underwent nighttime aging processes. Thus, the conceptual framework that OOA is predominantly formed in the presence of daylight fails to account for a substantial and rapid oxidation process occurring in the dark.&lt;/p&gt;


2020 ◽  
Vol 117 (52) ◽  
pp. 33028-33033
Author(s):  
John K. Kodros ◽  
Dimitrios K. Papanastasiou ◽  
Marco Paglione ◽  
Mauro Masiol ◽  
Stefania Squizzato ◽  
...  

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.


2015 ◽  
Vol 15 (13) ◽  
pp. 17967-18010 ◽  
Author(s):  
Y. Mancilla ◽  
A. Mendoza ◽  
M. P. Fraser ◽  
P. Herckes

Abstract. Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey Metropolitan Area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7–2.6) for n-alkanes indicate a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAH showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAH and elemental carbon (EC) were correlated (r2 = 0.39–0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAH. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.


2010 ◽  
Vol 14 (suppl.) ◽  
pp. 79-87 ◽  
Author(s):  
Bogdana Vujic ◽  
Srdjan Vukmirovic ◽  
Goran Vujic ◽  
Nebojsa Jovicic ◽  
Gordana Jovicic ◽  
...  

In the recent years, artificial neural networks (ANNs) have been used to predict the concentrations of various gaseous pollutants in ambient air, mainly to forecast mean daily particle concentrations. The data on traffic air pollution, irrespective of whether they are obtained by measuring or modelling, represent an important starting point for planning effective measures to improve air quality in urban areas. The aim of this study was to develop a mathematical model for predicting daily concentrations of air pollution caused by the traffic in urban areas. For the model development, experimental data have been collected for 10 months, covering all four seasons. The data about hourly concentration levels of suspended particles with aerodynamic diameter less than 10 ?m (PM10) and meteorological data (temperature, air humidity, speed and direction of wind), measured at the measuring station in the town of Subotica from June 2008 to March 2009, served as the basis for developing an ANN-based model for forecasting mean daily concentrations of PM10. The quality of the ANN model was assessed on the basis of the statistical parameters, such as RMSE, MAE, MAPE, and r.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2017 ◽  
Author(s):  
Ernesto Reyes-Villegas ◽  
Michael Priestley ◽  
Yu-Chieh Ting ◽  
Sophie Haslett ◽  
Thomas Bannan ◽  
...  

Abstract. Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires/fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrate chemistry was observed during the bonfire night with nitrogen containing compounds in both gas and aerosol phase and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals, ceasing production. Particulate organic nitrate (PON) concentrations of 2.8 μg.m−3 were estimated using the m/z 46:30 ratios from AMS measurements, according to previously published methods. ME-2 source apportionment was performed to determine organic aerosol concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 = 0.865 between BBOA and babs_470wb compared to an r2 = 0.819 obtained without the modification. Correlations between OA sources and measurements made using Time of Flight Chemical Ionization Mass Spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During bonfire night, high correlations (r2) were observed between BBOA and methacrylic acid (0.915), Acrylic acid (0.901), nitrous acid (0.864), propionic acid, (0.851) and Hydrogen cyanide (0.755). A series of oxygenated species, chlorine compounds as well as cresol showed good correlations with sPON_ME2 and the low volatility oxygenated organic aerosol (LVOOA) factor during an episode with low pollutant concentrations. Further analysis of pPON_ME2 and sPON_ME2 was performed in order to determine whether these PON sources absorb light near the UV region using an Aethalometer. This hypothesis was tested by doing multilinear regressions between babs_470wb and BBOA, sPON_ME2 and pPON_ME2. Our results suggest that sPON_ME2 does not absorb light at 470 nm while pPON_ME2 and LVOOA absorb light at 470 nm over that of black carbon. This may inform black carbon (BC) source apportionment studies from Aethalometer measurements, through investigation of the brown carbon contribution to babs_470wb.


Sign in / Sign up

Export Citation Format

Share Document