diode laser absorption
Recently Published Documents


TOTAL DOCUMENTS

755
(FIVE YEARS 89)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
pp. 000370282110608
Author(s):  
Wubin Weng ◽  
Jim Larsson ◽  
Joakim Bood ◽  
Marcus Aldén ◽  
Zhongshan Li

Hydrogen chloride (HCl) monitoring during combustion/gasification of biomass fuels and municipal solid waste, such as polyvinyl chloride (PVC) and food residues, is demanded to avoid the adverse effect of HCl to furnace operation and to improve the quality of the gas products. Infrared tunable diode laser absorption spectroscopy (IR-TDLAS) is a feasible nonintrusive in-situ method for HCl measurements in harsh environments. In the present work, the measurement was performed using the R(3) line of the ν2 vibrational band of HCl at 5739.25 cm–1 (1742.4 nm). Water vapor is ubiquitous in combustion/gasification environments, and its spectral interference is one of the most common challenges for IR-TDLAS. Spectral analysis based on the current well-known databases was found to be insufficient to achieve an accurate measurement. The lack of accurate temperature-dependent water spectra can introduce thousands parts per million (ppm) HCl overestimation. For the first time, accurate spectroscopic data of temperature-dependent water spectra near 5739.3 cm–1 were obtained based on a systematic experimental investigation of the hot water lines in a well-controlled, hot flue gas with a temperature varying from 1100 to 1950 K. With the accurate knowledge of hot water interference, the HCl TDLAS system can achieve a detection limit of about 100 ppm⋅m at around 1500 K, and simultaneously the gas temperature can be derived. The technique was applied to measure the temporally resolved HCl release and local temperature over burning PVC particles in hot flue gas at 1790 K.


2022 ◽  
Author(s):  
Bayu A. Dharmaputra ◽  
Yuan Xiong ◽  
Sergey Shcherbanev ◽  
Audrey Blondé ◽  
Nicolas Noiray

2021 ◽  
Vol 11 (22) ◽  
pp. 10936
Author(s):  
Renjie Li ◽  
Fei Li ◽  
Xin Lin ◽  
Xilong Yu

As an effective optical diagnosis method, tunable diode-laser absorption spectroscopy (TDLAS) has increasingly moved to examine nonuniform flows, such as two-dimensional combustion diagnosis. To investigate the effect of nonuniformity along the line of sight in a measurement using TDLAS, the integrated absorbance (IA, the key intermediate quantity in TDLAS) error was quantified. The error distribution is obtained from the line-shape parameters through the comprehensive analysis of the line-shape function and the fitting method. The effects of the fitting function and the absorption line overlap are also considered. A general method for estimating the error is given. The work illustrates the applicability of TDLAS technology in nonuniform flow fields and provides input parameters for the evaluation of tunable diode laser absorption tomography error.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2033
Author(s):  
Wubin Weng ◽  
Marcus Aldén ◽  
Zhongshan Li

Emission of nitrogen oxides (NOx) and soot particles during the combustion of biomass fuels and municipal solid waste is a major environmental issue. Hydrogen cyanide (HCN) and acetylene (C2H2) are important precursors of NOx and soot particles, respectively. In the current work, infrared tunable diode laser absorption spectroscopy (IR-TDLAS), as a non-intrusive in situ technique, was applied to quantitatively measure HCN and C2H2 in a combustion environment. The P(11e) line of the first overtone vibrational band v1 of HCN at 6484.78 cm−1 and the P(27e) line of the v1 + v3 combination band of C2H2 at 6484.03 cm−1 were selected. However, the infrared absorption of the ubiquitous water vapor in the combustion environment brings great uncertainty to the measurement. To obtain accurate temperature-dependent water spectra between 6483.8 and 6485.8 cm−1, a homogenous hot gas environment with controllable temperatures varying from 1100 to 1950 K provided by a laminar flame was employed to perform systematic IR-TDLAS measurements. By fitting the obtained water spectra, water interference to the HCN and C2H2 measurement was sufficiently mitigated and the concentrations of HCN and C2H2 were obtained. The technique was applied to simultaneously measure the temporally resolved release of HCN and C2H2 over burning nylon 66 strips in a hot oxidizing environment of 1790 K.


2021 ◽  
Vol 11 (15) ◽  
pp. 7048
Author(s):  
Alexey Sepman ◽  
Christian Fredriksson ◽  
Yngve Ögren ◽  
Henrik Wiinikka

A fast sensor for simultaneous high temperature (above 800 K) diagnostics of nitrogen oxide (NO) concentration and gas temperature (T) based on the spectral fitting of low-resolution NO UV absorption near 226 nm was applied in pilot-scale LKAB’s Experimental Combustion Furnace (ECF). The experiments were performed in plasma and/or fuel preheated air at temperatures up to 1550 K, which is about 200 K higher than the maximal temperature used for the validation of the developed UV NO sensor previously. The UV absorption NO and T measurements are compared with NO probe and temperature measurements via suction pyrometry and tuneable diode laser absorption (TDL) using H2O transitions at 1398 nm, respectively. The agreement between the NO UV and NO probe measurements was better than 15%. There is also a good agreement between the temperatures obtained using laser-based, optical, and suction pyrometer measurements. Comparison of the TDL H2O measurements with the calculated H2O concentrations demonstrated an excellent agreement and confirms the accuracy of TDL H2O measurements (better than 10%). The ability of the optical and laser techniques to resolve various variations in the process parameters is demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bin Li ◽  
Liang Xue ◽  
Nan Ji ◽  
Da Hui Wei

Laser current and temperature control circuits have been developed for a distributed feedback laser diode, which is applied as the light source of a tuneable diode laser absorption spectroscopy system. The laser’s temperature fluctuation can be limited within the range of −0.02 to 0.02°C, and good operation stability was observed through 15 hours of monitoring on the emitting wavelength of the laser. Response time of temperature modulation was tested which is suitable for the tuning requirements of gas detection systems. Laser current can be injected within the range from 40 to 80 mA. In addition, a linear power supply circuit has been developed to provide stable and low-noise power supply for the system. The physical principles of laser modulation theory are discussed before experiments. Experiments show that the output wavelength of the laser can be tuned accurately through changing the working current and temperature. The wavelength can be linearly controlled by temperature at 0.115 nm/°C (I = 70 mA) and be controlled by current at 0.0140 nm/mA (T = 25°C). This is essential for the tuneable diode laser absorption spectroscopy systems. The proposed cost-effective circuits can replace commercial instruments to drive the laser to meet the requirements of methane detection experiments. It can also be applied to detect other gases by changing the light source lasers and parameters of the circuits.


Sign in / Sign up

Export Citation Format

Share Document