mechanical energy loss
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hesong Li ◽  
Yi Wang ◽  
Shangcheng Xu ◽  
Yunfan Zhou ◽  
Dan Su

Periodic cruise has the potential to improve the fuel-saving efficiency of hypersonic cruise vehicles but is difficult to optimize. In this paper, hypersonic periodic cruise trajectory is analyzed theoretically and optimized by an improved Particle Swarm Optimization algorithm. Firstly, through theoretical analysis, it is determined that the optimal throttle curve can be parameterized as a switching function. Considering the optimization direction of algorithm, a new penalty function for the constraints of periodic cruise is proposed. Then, PSO algorithm is improved and applied in periodic cruise trajectory optimization. Numerical results demonstrate that optimized periodic cruise trajectory costs less fuel compared with steady-state cruise trajectory, and without computing gradient information, the proposed method is also robust. Finally, the fuel-saving mechanism of periodic cruise is explored by comparing with steady-state cruise, which reveals that periodic cruise trajectory has higher impulse and lift-drag ratio, but lower mechanical energy loss rate.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 156
Author(s):  
Lei Liu ◽  
Dongxu Liu ◽  
Na Huang

It is widely accepted that the frictional pressure drop is impossible to be negative for pipe flow. However, the negative frictional pressure drops were observed for some cases of two-phase slug and churn flows in pipes, challenging the general sense of thermodynamic irreversibility. In order to solve this puzzling problem, theoretical investigations were performed for the entropy generation in slug and churn flows. It is found that the frictional pressure drop along with a buoyancy-like term contributes to the entropy generation due to mechanical energy loss for steady, incompressible slug and churn flows in vertical and inclined pipes. Experiments were conducted in a vertical pipe with diameter as 0.04 m for slug and churn flows. Most of the experimental data obtained for frictional pressure drop are negative at high gas–liquid ratios from 100 to 10,000. Entropy generation rates were calculated from experimental data. The results show that the buoyancy-like term is positive and responsible for a major part of entropy generation rate while the frictional pressure drop is responsible for a little part of entropy generation rate, because of which the overall entropy generation due to mechanical energy loss is still positive even if the frictional pressure drop is negative in vertical slug and churn flows. It is clear that the negative frictional pressure drops observed in slug and churn flows are not against the thermodynamics irreversibility.


2017 ◽  
Vol 64 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Wojciech Artichowicz ◽  
Jerzy M. Sawicki

Abstract When systems of simple geometry like pipes or regular channels are considered, the mechanical energy loss of the fluid flow can be expressed by local and longitudinal empirical energy loss coefficients. However, in the case of large spatially distributed objects, there are no simple approaches to this task. In practice, general recommendations addressing different types of objects are used, but they usually provide very coarse estimates of energy loss. In this work, a new methodology for determination of mechanical energy loss in steady flowis proposed. This methodology is based on the observation that the magnitude of the power of energy dissipation in turbulent flow can be determined using the averaged flow velocity and turbulent viscosity coefficient. To highlight this possibility, an analysis of the magnitudes of the power of the main and fluctuating components of turbulent flow is presented. The correctness of the method is verified using an example of laminar and turbulent flows in a circular pipe. The results obtained show clearly that the proposed methodology can be used for mechanical energy loss determination in flow objects. This methodology can be used as a basis for mechanical energy loss determination in different types of flow objects.


1999 ◽  
Vol 121 (4) ◽  
pp. 751-755 ◽  
Author(s):  
E. de Villiers ◽  
D. G. Kro¨ger

The rate of heat, mass, and momentum transfer in the rain zone of three counterflow cooling tower geometries is analyzed using simplifying assumptions and numerical integration. The objective of the analysis is to generate equations for use in a one-dimensional mathematical cooling tower performance evaluations. Droplet deformation is taken into account and momentum transfer is calculated from the air flow’s mechanical energy loss, caused by air-droplet interaction. A comparison of dimensionless semi-empirical equations and experimental data demonstrates the method’s capability to predict the pressure drop in a counterflow rain zone.


Sign in / Sign up

Export Citation Format

Share Document