principal angle
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 349
Author(s):  
Huatian Tu ◽  
Yuxiang Zheng ◽  
Yao Shan ◽  
Yao Chen ◽  
Haotian Zhang ◽  
...  

We proposed a method to study the effects of azimuth and the incident angle on the accuracy and stability of rotating polarizer analyzer ellipsometer (RPAE) with bulk Au. The dielectric function was obtained at various incident angles in a range of 55°–80° and analyzed with the spectrum of the principal angle. The initial orientations of rotating polarizing elements were deviated by a series of angles to act as the azimuthal errors in various modes. The spectroscopic measurements were performed in a wavelength range of 300–800 nm with an interval of 10 nm. The repeatedly-measured ellipsometric parameters and determined dielectric constants were recorded monochromatically at wavelengths of 350, 550, and 750 nm. The mean absolute relative error was employed to evaluate quantitatively the performance of instrument. Apart from the RPAE, the experimental error analysis implemented in this work is also applicable to other rotating element ellipsometers.


Author(s):  
Zhiqiang Xu ◽  
Xin Cao ◽  
Xin Gao

We present a novel, simple and systematic convergence analysis of gradient descent for eigenvector computation. As a popular, practical, and provable approach to numerous machine learning problems, gradient descent has found successful applications to eigenvector computation as well. However, surprisingly, it lacks a thorough theoretical analysis for the underlying geodesically non-convex problem. In this work, the convergence of the gradient descent solver for the leading eigenvector computation is shown to be at a global rate O(min{ (lambda_1/Delta_p)^2 log(1/epsilon), 1/epsilon }), where Delta_p=lambda_p-lambda_p+1>0 represents the generalized positive eigengap and always exists without loss of generality with lambda_i being the i-th largest eigenvalue of the given real symmetric matrix and p being the multiplicity of lambda_1. The rate is linear at (lambda_1/Delta_p)^2 log(1/epsilon) if (lambda_1/Delta_p)^2=O(1), otherwise sub-linear at O(1/epsilon). We also show that the convergence only logarithmically instead of quadratically depends on the initial iterate. Particularly, this is the first time the linear convergence for the case that the conventionally considered eigengap Delta_1= lambda_1 - lambda_2=0 but the generalized eigengap Delta_p satisfies (lambda_1/Delta_p)^2=O(1), as well as the logarithmic dependence on the initial iterate are established for the gradient descent solver. We are also the first to leverage for analysis the log principal angle between the iterate and the space of globally optimal solutions. Theoretical properties are verified in experiments.


2016 ◽  
Vol 64 (2) ◽  
pp. 380-394 ◽  
Author(s):  
Haiyang Xin ◽  
Xiaojun Yuan ◽  
Soung-Chang Liew
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document