wandering domain
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Anna Miriam Benini ◽  
Vasiliki Evdoridou ◽  
Núria Fagella ◽  
Philip J. Rippon ◽  
Gwyneth M. Stallard

AbstractWhile the dynamics of transcendental entire functions in periodic Fatou components and in multiply connected wandering domains are well understood, the dynamics in simply connected wandering domains have so far eluded classification. We give a detailed classification of the dynamics in such wandering domains in terms of the hyperbolic distances between iterates and also in terms of the behaviour of orbits in relation to the boundaries of the wandering domains. In establishing these classifications, we obtain new results of wider interest concerning non-autonomous forward dynamical systems of holomorphic self maps of the unit disk. We also develop a new general technique for constructing examples of bounded, simply connected wandering domains with prescribed internal dynamics, and a criterion to ensure that the resulting boundaries are Jordan curves. Using this technique, based on approximation theory, we show that all of the nine possible types of simply connected wandering domain resulting from our classifications are indeed realizable.



2020 ◽  
Vol 70 (4) ◽  
pp. 839-848
Author(s):  
Vishnu Narayan Mishra ◽  
Garima Tomar

AbstractDynamics of composition of entire functions is well related to it's factors, as it is known that for entire functions f and g, fog has wandering domain if and only if gof has wandering domain. However the Fatou components may have different structures and properties. In this paper we have shown the existence of domains with all possibilities of wandering and periodic in given angular region θ.



Author(s):  
DAVID MARTÍ-PETE

Abstract We study the iteration of transcendental self-maps of $\,\mathbb{C}^*\!:=\mathbb{C}\setminus \{0\}$ , that is, holomorphic functions $f:\mathbb{C}^*\to\mathbb{C}^*$ for which both zero and infinity are essential singularities. We use approximation theory to construct functions in this class with escaping Fatou components, both wandering domains and Baker domains, that accumulate to $\{0,\infty\}$ in any possible way under iteration. We also give the first explicit examples of transcendental self-maps of $\,\mathbb{C}^*$ with Baker domains and with wandering domains. In doing so, we developed a sufficient condition for a function to have a simply connected escaping wandering domain. Finally, we remark that our results also provide new examples of entire functions with escaping Fatou components.



Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950099 ◽  
Author(s):  
ROBERTO DE LEO

We collect from several sources some of the most important results on the forward and backward limits of points under real and complex rational functions, and in particular real and complex Newton maps, in one variable and we provide numerical evidence that the dynamics of Newton maps [Formula: see text] associated to real polynomial maps [Formula: see text] with no complex roots has a complexity comparable with that of complex Newton maps in one variable. In particular such a map [Formula: see text] has no wandering domain, almost every point under [Formula: see text] is asymptotic to a fixed point and there is some non-empty open set of points whose [Formula: see text]-limit equals the set of non-regular points of the Julia set of [Formula: see text]. The first two points were proved by B. Barna in the real one-dimensional case.



2019 ◽  
Vol 150 (2) ◽  
pp. 633-654 ◽  
Author(s):  
Krzysztof Barański ◽  
Núria Fagella ◽  
Xavier Jarque ◽  
Bogusława Karpińska

AbstractWe prove several results concerning the relative position of points in the postsingular set P(f) of a meromorphic map f and the boundary of a Baker domain or the successive iterates of a wandering component. For Baker domains we answer a question of Mihaljević-Brandt and Rempe-Gillen. For wandering domains we show that if the iterates Un of such a domain have uniformly bounded diameter, then there exists a sequence of postsingular values pn such that ${\rm dist} (p_n, U_n)\to 0$ as $n\to \infty $. We also prove that if $U_n \cap P(f)=\emptyset $ and the postsingular set of f lies at a positive distance from the Julia set (in ℂ), then the sequence of iterates of any wandering domain must contain arbitrarily large disks. This allows to exclude the existence of wandering domains for some meromorphic maps with infinitely many poles and unbounded set of singular values.





2011 ◽  
Vol 91 (3) ◽  
pp. 289-311 ◽  
Author(s):  
WALTER BERGWEILER ◽  
JIAN-HUA ZHENG

AbstractWe investigate when the boundary of a multiply connected wandering domain of an entire function is uniformly perfect. We give a general criterion implying that it is not uniformly perfect. This criterion applies in particular to examples of multiply connected wandering domains given by Baker. We also provide examples of infinitely connected wandering domains whose boundary is uniformly perfect.



2004 ◽  
Vol 14 (01) ◽  
pp. 321-327 ◽  
Author(s):  
XIAOLING WANG ◽  
CHUNG-CHUN YANG

Let f denote a transcendental entire function, and I(f), I0(f), T(f) and A(f) be denoted as follows: [Formula: see text][Formula: see text] Let D denote a Fatou component of F(f). We have established the relationships between D and I(f), I0(f), T(f) or A(f), when D is a Baker domain or a multiply-connected wandering domain or a simply-connected infinitely wandering domain.



2001 ◽  
Vol 21 (2) ◽  
pp. 563-603 ◽  
Author(s):  
HIROKI SUMI

We consider dynamics of sub-hyperbolic and semi-hyperbolic semigroups of rational functions on the Riemann sphere and will show some no wandering domain theorems. The Julia set of a rational semigroup in general may have non-empty interior points. We give a sufficient condition that the Julia set has no interior points. From some information about forward and backward dynamics of the semigroup, we consider when the area of the Julia set is equal to zero or an upper estimate of the Hausdorff dimension of the Julia set.



Sign in / Sign up

Export Citation Format

Share Document