laser ablation in liquid
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 162)

H-INDEX

40
(FIVE YEARS 9)

2022 ◽  
Vol 238 ◽  
pp. 111581
Author(s):  
Fatemeh Seifikar ◽  
Saeid Azizian ◽  
Mahtab Eslamipanah ◽  
Babak Jaleh

Silicon ◽  
2022 ◽  
Author(s):  
Amnah S. Abd-Alrahman ◽  
Raid A.Ismail ◽  
Mudhafar A. Mohammed

2022 ◽  
Vol 123 ◽  
pp. 111901
Author(s):  
Lumeng Liang ◽  
Weili Shen ◽  
Jiaxin Wang ◽  
Teng Ma ◽  
Jun Chen

2021 ◽  
Author(s):  
Li Shen ◽  
Sikun Zhou ◽  
Fei Huang ◽  
Hao Zhou ◽  
Hong Zhang ◽  
...  

Abstract In this work, graphene quantum dots (GQDs) synthesized by femtosecond laser ablation in liquid (LAL) using laser-induced graphene (LIG) as the carbon source. Nitrogen-doped graphene quantum dots (N-GQDs) were successfully synthesized by adding ammonia water to the graphene suspension. The GQDs/N-GQDs structure consist of a graphitic core with oxygen and nitrogen functionalities and particle size less than 10 nm, as demonstrated by X-ray photoelectron spectroscopy, Fourier infrared spectrometer spectroscopy and transmission electron microscopy. The absorption peak and PL spectrum and quantum yield of the N-GQDs were significantly enhanced compared with the undoped GQDs. Further, the possible mechanism of synthesis GQDs is discussed. Furthermore, the N-GQDs were used as a fluorescent probe for detection of Fe3+ ions. The N-GQDs may extend the application of graphene-based materials to bioimaging, sensor and, photoelectronic.


2021 ◽  
pp. 103606
Author(s):  
Abbad Al Baroot ◽  
Muidh Alheshibri ◽  
Q.A. Drmosh ◽  
Sultan Akhtar ◽  
Essam Kotb ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10974
Author(s):  
Anesu Nyabadza ◽  
Mercedes Vázquez ◽  
Shirley Coyle ◽  
Brian Fitzpatrick ◽  
Dermot Brabazon

Magnesium nanoparticles of various mean diameters (53–239 nm) were synthesised in this study via pulsed laser ablation in liquid (PLAL) from millimetre sized magnesium powders within isopropyl alcohol. It was observed via a 3 × 3 full factorial design of experiments that the processing parameters can control the nanoparticle distribution to produce three size-distribution types (bimodal, skewed and normal). Ablation times of 2, 5, and 25 min where investigated. An ablation time of 2 min produced a bimodal distribution with the other types seen at higher periods of processing. Mg nanoparticle Ultraviolet–Visible spectroscopy (UV–Vis) absorbance at 204 nm increased linearly with increasing ablation time, indicating an increase in nanoparticle count. The colloidal density (mg/mL) generally increased with increasing nanoparticle mean diameter as noted via increasing UV–Vis absorbance. High laser scan speeds (within the studied range of 3000–3500 mm/s) tend to increase the nanoparticle count/yield. For the first time, the effect of scan speed on colloidal density, UV–Vis absorbance and nanoparticle diameter from metallic powder ablation was investigated and is reported herein. The nanoparticles formed dendritic structures after being drop cast on aluminium foil as observed via field emission scanning electron microscope analysis. Dynamic light scattering was used to measure the size of the nanoparticles. Magnesium nanoparticle inks show promise for use in the fabrication conductive tracks or thermal insulation in electronics.


2021 ◽  
Vol 11 (21) ◽  
pp. 10344
Author(s):  
Marcella Dell’Aglio ◽  
Alessandro De Giacomo

Pulsed laser ablation in liquid (PLAL) is gaining an important role as a methodology for producing nanostructures without the use of chemicals and stabilizers. Several nanomaterials have been produced and the engineering of PLAL is becoming an important task for the dissemination of this approach for nanostructure production. Monitoring the processes involved in the PLAL during nanostructure production can be extremely useful for improving the experimental methods and for pushing PLAL to new material formation. In this paper, we discuss the use of optical techniques for investigating the specific stages involved in the production of nanomaterials with PLAL. In particular, the recent advancements of these optical techniques for each specific stage of the PLAL process will be discussed: optical emission spectroscopy and imaging for the investigation of the plasma phase, shadowgraph imaging for the investigation of the cavitation bubble dynamics and different scattering techniques for the visualization of the produced nanostructure.


Sign in / Sign up

Export Citation Format

Share Document