On thermoelastic problem of a thermosensitive functionally graded rectangular plate with instantaneous point heat source

2019 ◽  
Vol 42 (7) ◽  
pp. 849-862 ◽  
Author(s):  
V. R. Manthena ◽  
G. D. Kedar
1970 ◽  
Vol 92 (2) ◽  
pp. 357-365 ◽  
Author(s):  
T. R. Hsu

This paper contains exact solutions for the transient temperature distribution and the associated quasi-static thermal stresses and deformations which arise in a thin circular disk of finite radius subjected to a continuous point heat source acting on its periphery. It has been proven in this paper that the solutions of this type of problem may be obtained by integrating the time variable of the corresponding solutions in the case of an instantaneous point heat source. The solutions are given in the form of double infinite series and graphical representations of the solutions in dimensionless terms are included. Reference is made to methods of applying the solutions to shapes other than disks. The solutions are pertinent to problems which occur in welding engineering and modern nuclear technology.


1998 ◽  
Vol 120 (4) ◽  
pp. 645-651 ◽  
Author(s):  
Zhen-Bing Hou ◽  
R. Komanduri

A thermal model for magnetic field assisted polishing of ceramic balls/rollers is presented. The heat source at the area of contact between the balls and the abrasives where material removal takes place is approximated to a disk. The disk heat source is considered as a combination of a series of concentric circular ring heat sources with different radii. Each ring in turn is considered as a combination of a series of infinitely small arc segments and each arc segment as a point heat source. Jaeger’s classical moving heat source theory (Jaeger, 1942; Carslaw and Jaeger, 1959) is used in the development of the model, starting from an instantaneous point heat source, to obtain the general solution (transient and steady-state) of the moving circular ring heat source problem and finally the moving disc heat source problem. Due to the formation of fine scratches during polishing (on the order of a few micrometers long), the conditions are found to be largely transient in nature. Calculation of the minimum flash temperatures and minimum flash times during polishing enables the determination if adequate temperatures can be generated for chemo-mechanical polishing or not. This model is applied in Part II for magnetic float polishing (MFP) of ceramic balls and in Part III for magnetic abrasive finishing (MAF) of ceramic rollers.


Sign in / Sign up

Export Citation Format

Share Document