indoor radio propagation
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 2)

2019 ◽  
Vol 1381 ◽  
pp. 012054
Author(s):  
B.B Harianto ◽  
M. Hendrantoro ◽  
G. Ardiansyah ◽  
A. Mauludiyanto

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 510 ◽  
Author(s):  
Ferdous Hossain ◽  
Tan Geok ◽  
Tharek Rahman ◽  
Mohammad Hindia ◽  
Kaharudin Dimyati ◽  
...  

This paper describes a smart ray-tracing method based on the ray concept. From the literature review, we observed that there is still a research gap on conventional ray-tracing methods that is worthy of further investigation. The herein proposed smart 3D ray-tracing method offers an efficient and fast way to predict indoor radio propagation for supporting future generation networks. The simulation data was verified by measurements. This method is advantageous for developing new ray-tracing algorithms and simulators to improve propagation prediction accuracy and computational speed.


Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Sardar Gulfam ◽  
Syed Nawaz ◽  
Konstantinos Baltzis ◽  
Abrar Ahmed ◽  
Noor Khan

Extension of usable frequency spectrum from microwave to millimeter-wave (mmWave) is one of the key research directions in addressing the capacity demands of emerging 5th-generation communication networks. This paper presents a thorough analysis on the azimuthal multipath shape factors and second-order fading statistics (SOFS) of outdoor and indoor mmWave radio propagation channels. The well-established analytical relationship of plain angular statistics of a radio propagation channel with the channel’s fading statistics is used to study the channel’s fading characteristics. The plain angle-of-arrival measurement results available in the open literature for four different outdoor radio propagation scenarios at 38 GHz, as well as nine different indoor radio propagation scenarios at 28 GHz and 38 GHz bands, are extracted by using different graphical data interpretation techniques. The considered quantifiers for energy dispersion in angular domain and SOFS are true standard-deviation, angular spread, angular constriction, and direction of maximum fading; and spatial coherence distance, spatial auto-covariance, average fade duration, and level-crossing-rate; respectively. This study focuses on the angular spread analysis only in the azimuth plane. The conducted analysis on angular spread and SOFS is of high significance in designing modulation schemes, equalization schemes, antenna-beams, channel estimation, error-correction techniques, and interleaving algorithms; for mmWave outdoor and indoor radio propagation environments.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 73741-73750 ◽  
Author(s):  
Amit Kachroo ◽  
Surbhi Vishwakarma ◽  
Jacob N. Dixon ◽  
Hisham Abuella ◽  
Adithya Popuri ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1788
Author(s):  
Ben Bellekens ◽  
Rudi Penne ◽  
Maarten Weyn

Sign in / Sign up

Export Citation Format

Share Document