outwash plain
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Justin Anderson ◽  
John Holbrook ◽  
Ronald J. Goble

The Missouri River is a continent-scale river that has thus far escaped a rigorous reporting of valley fill trends within its trunk system. This study summarizes evolution of the lower Missouri River profile from the time of outwash in the Last Glacial Maximum (LGM) until establishment of the modern dominantly precipitation-fed river. This work relies on optically stimulated luminescence (OSL) dating, water-well data, and a collection of surficial geological maps of the valley compiled from U.S. Geological Survey EDMAP and National Science Foundation Research Experience for Undergrads projects. Mapping reveals five traceable surfaces within valley fill between Yankton, South Dakota, USA, and Columbia, Missouri, USA, that record two cycles of incision and aggradation between ca. 23 ka and ca. 8 ka. The river aggraded during the LGM to form the Malta Bend surface by ca. 26 ka. The Malta Bend surface is buried and fragmented but presumed to record a braided outwash plain. The Malta Bend surface was incised up to 18 m between ca. 23 ka and ca. 16 ka to form the Carrolton surface (ca. 16 ka to ca. 14 ka). The Carrollton surface ghosts a braided outwash morphology locally through overlying mud. Aggradation followed (ca. 14 ka to ca. 13.5 ka) to within 4 m of the modern floodplain surface and generated the Salix surface (ca. 13.5 to ca. 12 ka). By Salix time, the Missouri River was no longer an outwash river and formed a single-thread meandering pattern. Reincision at ca. 12 ka followed Salix deposition to form the short-lived Vermillion surface at approximately the grade of the earlier Carrolton surface. Rapid aggradation from ca. 10 ka to ca. 8 ka followed and formed the modern Omaha surface (ca. 8 ka to Present). The higher Malta Bend and Omaha profiles are at roughly the same grade, as are the lower Carrolton and Vermillion surfaces. The Salix surface is in between. All surfaces converge downstream as they enter the narrow and shallow bedrock valley just before reaching Columbia, Missouri. The maximum departure of the profiles is 18 m near Sioux City, Iowa, USA, at ∼100 km downstream from the James Lobe glacial input near Yankton, South Dakota. Incision and aggradation appear to be driven by relative changes in input of sediment and water related to glacial advance and retreat and then later by climatic changes near the Holocene transition. The incision from the Malta Bend to the Carrolton surface records the initial breakdown of the cryosphere at the end of the LGM, and this same incisional event is found in both the Ohio and Mississippi valleys. This incisional event records a “big wash” that resulted in the evacuation of sediment from each of the major outwash rivers of North America. The direction and magnitude of incision from the LGM to the modern does not fit with modeled glacioisostatic adjustment trends for the Missouri Valley. Glaciotectonics likely influenced the magnitude of incision and aggradation secondarily but does not appear to have controlled the overall timing or magnitude of either. Glaciotectonic valley tilting during the Holocene, however, did likely cause the Holocene channel to consistently migrate away from the glacial front, which argues for a forebulge axis south of the Missouri Valley during the Holocene and, by inference, earlier. This is at least 200 km south of where models predict the Holocene forebulge axis. The Missouri Valley thus appears to reside in the tectonic low between the ice front and the forebulge crest. The buffer valley component of incision caused by profile variation could explain as much as 25 m of the total ∼40 m of valley incision at Sioux City, Iowa. The Missouri Valley also hosted a glacial lobe as far south as Sioux City, Iowa, in pre-Wisconsinan time, which is also a factor in valley excavation.


2020 ◽  
Vol 27 (1-2) ◽  
Author(s):  
Martin Hanáček ◽  
Katarína Adameková

Glaciofluvial and glaciolacustrine sediments were discovered in a small sandpit situated 800 m SE from Vindava (the Polský kopec Site). Sediments fill two channels located in superposition. Three facies associations (FA) were distinguished in this sedimentary section. The base of the lower channel is formed by gravel lag overlain by gravel-sandy sediments of 3-D dunes and a side bar (FA1). The upper channel infill begins also by basal lag and grades to a fining-upwards sequence from sand to silt (FA2). The sequence is formed from the base up by sediments of small 3-D dunes, A-type ripples, B-type ripples, C-type ripples, and horizontally laminated sediments. The sequence reveals a vertical transition from glaciofluvial (sand) to glaciolacustrine (silt) sedimentation. The sedimentary section is terminated by flat glaciofluvial bedforms (FA3) deposited under upper plane bed conditions. These bedforms arose after the restoration of glaciofluvial conditions. The base of the glaciolacustrine sequence is located at an altitude of ~ 275 m as well as the Old Kaolin Mine Site (850 m SW from the Polský kopec Site) where very similar sediments have been already described. The sediments of both localities represent a proglacial outwash plain in front of the retreating ice sheet (FA1 consists of ~ 23% of erratic rocks), where a relatively large lake, or a system of smaller lakes evolved at the same time. 


Geology ◽  
2020 ◽  
Vol 48 (9) ◽  
pp. 867-871 ◽  
Author(s):  
Adam A. Garde ◽  
Anne Sofie Søndergaard ◽  
Carsten Guvad ◽  
Jette Dahl-Møller ◽  
Gernot Nehrke ◽  
...  

Abstract The 31-km-wide Hiawatha impact crater was recently discovered under the ice sheet in northwest Greenland, but its age remains uncertain. Here we investigate solid organic matter found at the tip of the Hiawatha Glacier to determine its thermal degradation, provenance, and age, and hence a maximum age of the impact. Impactite grains of microbrecchia and shock-melted glass in glaciofluvial sand contain abundant dispersed carbon, and gravel-sized charcoal particles are common on the outwash plain in front of the crater. The organic matter is depleted in the thermally sensitive, labile bio-macromolecule proto-hydrocarbons. Pebble-sized lumps of lignite collected close to the sand sample consist largely of fragments of conifers such as Pinus or Picea, with greatly expanded cork cells and desiccation cracks which suggest rapid, heat-induced expansion and contraction. Pinus and Picea are today extinct from North Greenland but are known from late Pliocene deposits in the Canadian Arctic Archipelago and early Pleistocene deposits at Kap København in eastern North Greenland. The thermally degraded organic material yields a maximum age for the impact, providing the first firm evidence that the Hiawatha crater is the youngest known large impact structure on Earth.


2020 ◽  
Vol 102 (2) ◽  
pp. 162-181
Author(s):  
Antonia C. Law ◽  
Zoe Robinson ◽  
Katie Szkornik ◽  
Richard I. Waller

2020 ◽  
Author(s):  
Tom Müller ◽  
Bettina Schaefli ◽  
Stuart N. Lane

<p>Rapid glacier recession related to recent climate change in Alpine regions is exposing large areas of previously ice-covered till and bedrock. These newly created proglacial areas are composed of poorly sorted sediments and debris of mixed subglacial (till), englacial and supraglacial origin. They are subject to rapid geomorphological and ecological modifications. They also constitute potential new groundwater reservoirs for rain, snowmelt and ice melt. The hydrology of such glaciated catchments is therefore evolving, but the connectivity between glacier meltwater and other paraglacial structures such as talus slopes, outwash plains or small lakes to these areas remains unclear. We propose a conceptual model of water connectivity and storage based on the Otemma glacier, one of the largest Swiss glaciers, which summarizes the key geomorphological structures and their hydrological functions. In particular, we combine multiple field data such as water table fluctuations, river discharge, isotopic analysis and geophysical studies from the proglacial area of the Otemma glacier to show the growing importance of the outwash plain for storing water and maintaining baseflow in these headwater catchments. We show that the accumulation of reworked subglacial till and exported sediments from the glacier create new reservoirs for the storage and release of water which may become larger in regions where the subglacial bedrock has a low slope and where ice is rapidly retreating. These fluvioglacial aquifers are mainly recharged by ice-melt at present but could store more snowmelt and precipitation in the future. The processes influencing sediment export and aggradation combined with future snow and ice melt dynamics are therefore key to understanding the future hydrological functioning of these catchments. River and groundwater dynamics will eventually shape the biodiversity and vegetation succession of these areas that are hotspots for many endemic species and where soil stabilization and development will create a clear feedback on the future sediment and water budget of high Alpine environments.</p>


2018 ◽  
Vol 31 ◽  
pp. 91-104 ◽  
Author(s):  
Kelsey E. Nyland ◽  
Randall J. Schaetzl ◽  
Anthony Ignatov ◽  
Bradley A. Miller

Sign in / Sign up

Export Citation Format

Share Document