insect communication
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Alessandro Cini ◽  
Luca Pietro Casacci ◽  
Volker Nehring

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingrui Li ◽  
Yiming Wang ◽  
Yanmei Dong ◽  
Wenying Zhang ◽  
Di Wang ◽  
...  

AbstractThe aromatic shrub Lavandula angustifolia produces various volatile terpenoids that serve as resources for essential oils and function in plant-insect communication. To better understand the genetic basis of the terpenoid diversity in lavender, we present a high-quality reference genome for the Chinese lavender cultivar ‘Jingxun 2’ using PacBio and Hi-C technologies to anchor the 894.50 Mb genome assembly into 27 pseudochromosomes. In addition to the γ triplication event, lavender underwent two rounds of whole-genome duplication (WGD) during the Eocene–Oligocene (29.6 MYA) and Miocene–Pliocene (6.9 MYA) transitions. As a result of tandem duplications and lineage-specific WGDs, gene families related to terpenoid biosynthesis in lavender are substantially expanded compared to those of five other species in Lamiaceae. Many terpenoid biosynthesis transcripts are abundant in glandular trichomes. We further integrated the contents of ecologically functional terpenoids and coexpressed terpenoid biosynthetic genes to construct terpenoid-gene networks. Typical gene clusters, including TPS-TPS, TPS-CYP450, and TPS-BAHD, linked with compounds that primarily function as attractants or repellents, were identified by their similar patterns of change during flower development or in response to methyl jasmonate. Comprehensive analysis of the genetic basis of the production of volatiles in lavender could serve as a foundation for future research into lavender evolution, phytochemistry, and ecology.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Fabíola Gonzaga Saldanha ◽  
Sérgio Roberto Rodrigues ◽  
Ricardo Aparecido Amaro ◽  
Juares Fuhrmann

Abstract The genus Cyclocephala is common in Brazil (Coleoptera, Scarabaeidae, Dynastinae). The adults of some species are important pollinators, and the larvae develop in the soil, feed on organic matter, and contribute to nutrient cycle, but immatures of some species feed on plant roots, and some were registered causing damage in crops. The mating process of some phytophagous scarab beetles has a chemical recognition step, and the antenna is the main structure involved in the detection of odorants associated with insect communication. In the present study the mating behavior, life cycle, and antennal sensilla of C. putrida are described. The study was conducted at the Universidade Estadual de Mato Grosso do Sul, Cassilândia, Brazil. Adults were collected by a light trap installed from January 2016 to December 2017 and were taken to the laboratory for studies. Adults swarms are brief and were registered from January to February, and specimens were mostly collected at 20:00 to 22:00h. Chemical recognition may occur at least during one of the mating steps, during which the couple kept their antennae moving and the lamellae open, while females select males. In laboratory, the mating process lasted 7.5 minutes on average. The antennae of females have about 3399 sensilla and males about 4229 sensilla. Sensilla placodea types I, II, and III are the most abundant, and sensilla ampullacea, basiconica, and coeloconica are also present. The embryonic period lasted 16.0 days; first, second and third instars lasted 16.0, 48.3, and 165.3 days, respectively. The pupal period lasted 24.0 days. The period between egg deposition and adult emergency is about 271.5 days.


2019 ◽  
Vol 31 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Mario Gallego-Abenza ◽  
Nicolas Mathevon ◽  
David Wheatcroft

Abstract In response to anthropogenic noise, vertebrates express modified acoustic communication signals either through individual plasticity or local population adaptation. In contrast, how insects respond to this stressor is poorly studied. Field crickets Gryllus bimaculatus use acoustic signals to attract and locate mates and are commonly found in noisy roadside environments, offering a powerful system to study the effects of anthropogenic noise on insect communication. Rapid repetition of sexual calls (chirps) is essential to attract females, but calling incurs energetic costs and attracts predators. As a result, males are predicted to reduce calling rates when background noise is high. Here, we combine observations and experimental playbacks to show that the responses of field cricket males to anthropogenic noise also depend on their previous experience with passing cars. First, we show that males living on highway edges decrease their chirp rate in response to passing cars. To assess whether this behavioral response depends on previous exposure to car noise, we then broadcast recordings of car noise to males located at different distances from the road and, therefore, with different previous exposure to car noise. Although all tested individuals responded to broadcasted traffic noise, males closest to the road decreased their chirp rate less than individuals calling further from the road. These results suggest that regular exposure to anthropogenic noise may decrease individuals’ sensitivity and behavioral responses to noise, allowing them to maintain effective signaling rates. Behavioral plasticity modulated by experience may thus allow some insect species to cope with human-induced environmental stressors.


2018 ◽  
Vol 65 (4) ◽  
pp. 467-481 ◽  
Author(s):  
Jair E Garcia ◽  
Mani Shrestha ◽  
Scarlett R Howard ◽  
Phred Petersen ◽  
Adrian G Dyer

AbstractAngle dependent colors, such as iridescence, are produced by structures present on flower petals changing their visual appearance. These colors have been proposed to act as signals for plant–insect communication. However, there is a paucity of behavioral data to allow for interpretations of how to classify these colors either as a signal or a cue when considering the natural conditions under which pollination occurs. We sampled flowers from 6 plant species across various viewpoints looking for changes in the visual appearance of the petals. Spectral characteristics were measured with different instruments to simulate both the spectral and spatial characteristics of honeybee’s vision. We show the presence of color patches produced by angle dependent effects on the petals and the calyx of various species; however, the appearance of the angle dependent color patches significantly varies with viewpoint and would only be resolved by the insect eye at close distances. Behavior experiments with honeybees revealed that pollinators did not use angle dependent colors to drive behavior when presented with novel flower presentations. Results show that angle dependent colors do not comply with the requirements of a signal for plant–pollinator communication since the information transmitted by these colors would be unreliable for potential, free-flying pollination vectors. We thus classify angle dependent colors produced by micro- and ultra-structures as being a cue (a feature which has not evolved for communication), and observe no evidence supporting claims of these angle dependent colors having evolved as visual signal.


2016 ◽  
Vol 113 (11) ◽  
pp. 2922-2927 ◽  
Author(s):  
Franziska Beran ◽  
Peter Rahfeld ◽  
Katrin Luck ◽  
Raimund Nagel ◽  
Heiko Vogel ◽  
...  

Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.


2015 ◽  
Vol 112 (51) ◽  
pp. 15678-15683 ◽  
Author(s):  
Ayako Wada-Katsumata ◽  
Ludek Zurek ◽  
Godfrey Nalyanya ◽  
Wendell L. Roelofs ◽  
Aijun Zhang ◽  
...  

Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites.


Sign in / Sign up

Export Citation Format

Share Document