ultrastructural model
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 118 (28) ◽  
pp. e2024961118
Author(s):  
Aayush Kant ◽  
Victoria E. Johnson ◽  
John D. Arena ◽  
Jean-Pierre Dollé ◽  
Douglas H. Smith ◽  
...  

Damage to the microtubule lattice, which serves as a rigid cytoskeletal backbone for the axon, is a hallmark mechanical initiator of pathophysiology after concussion. Understanding the mechanical stress transfer from the brain tissue to the axonal cytoskeleton is essential to determine the microtubule lattice’s vulnerability to mechanical injury. Here, we develop an ultrastructural model of the axon’s cytoskeletal architecture to identify the components involved in the dynamic load transfer during injury. Corroborative in vivo studies were performed using a gyrencephalic swine model of concussion via single and repetitive head rotational acceleration. Computational analysis of the load transfer mechanism demonstrates that the myelin sheath and the actin/spectrin cortex play a significant role in effectively shielding the microtubules from tissue stress. We derive failure maps in the space spanned by tissue stress and stress rate to identify physiological conditions in which the microtubule lattice can rupture. We establish that a softer axonal cortex leads to a higher susceptibility of the microtubules to failure. Immunohistochemical examination of tissue from the swine model of single and repetitive concussion confirms the presence of postinjury spectrin degradation, with more extensive pathology observed following repetitive injury. Because the degradation of myelin and spectrin occurs over weeks following the first injury, we show that softening of the myelin layer and axonal cortex exposes the microtubules to higher stress during repeated incidences of traumatic brain injuries. Our predictions explain how mechanical injury predisposes axons to exacerbated responses to repeated injuries, as observed in vitro and in vivo.


Author(s):  
Makoto Someya ◽  
Hiroaki Tanaka ◽  
Asuka Hatano ◽  
Satoshi Izumi ◽  
Masahiko Hoshijima ◽  
...  

Parasite ◽  
2020 ◽  
Vol 27 ◽  
pp. 67
Author(s):  
Papa Ibnou Ndiaye ◽  
Bernard Marchand ◽  
Cheikh Tidiane Bâ ◽  
Jean-Lou Justine ◽  
Rodney Alan Bray ◽  
...  

The ultrastructure of the mature spermatozoa of Tergestia clonacantha and T. laticollis collected from the digestive tracts of fishes from New Caledonia is described using transmission electron microscopy and compared to that of related species. The spermatozoa of the two species exhibit the general pattern described in most digeneans, namely two axonemes with the 9 + “1” pattern of the Trepaxonemata, nucleus, mitochondrion, cortical microtubules, an external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. The spermatozoa of T. clonacantha and T. laticollis show the same ultrastructural model with some specificities in each case, particularly in the disposition of the structures in the posterior extremities of the spermatozoon. This study confirms that ultrastructural characters of the mature spermatozoon are useful tools for the phylogenetic analysis of the Digenea.


2014 ◽  
Vol 3 (4) ◽  
pp. 1542-1560 ◽  
Author(s):  
Christopher Ardeljan ◽  
Daniel Ardeljan ◽  
Mones Abu-Asab ◽  
Chi-Chao Chan

2012 ◽  
Vol 47 (6) ◽  
pp. 800-806 ◽  
Author(s):  
Thomas Burgoyne ◽  
Mellisa Dixon ◽  
Pradeep Luther ◽  
Claire Hogg ◽  
Amelia Shoemark

2003 ◽  
Vol 285 (2) ◽  
pp. F241-F257 ◽  
Author(s):  
Peng Guo ◽  
Alan M. Weinstein ◽  
Sheldon Weinbaum

A dual-pathway model is proposed for transport across the tight junction (TJ) in rat proximal tubule: large slit breaks formed by infrequent discontinuities in the TJ complex and numerous small circular pores, with spacing similar to that of claudin-2. This dual-pathway model is developed in the context of a proximal tubule model (Weinstein AM. Am J Physiol Renal Fluid Electrolyte Physiol 247: F848–F862, 1984) to provide an ultrastructural view of solute and water fluxes. Tubule model paramters (TJ reflection coefficient and water permeability), plus the measured epithelial NaCl and sucrose permeabilities, provide constraints for the dual-pathway model, which yields the small-pore radius and spacing and large slit height and area. For a small-pore spacing of 20.2 nm, comparable to the distance between adjacent particle pairs in apposing TJ strands, the small-pore radius is 0.668 nm and the large slit breaks have a height of 19.6 nm, occupying 0.04% of the total TJ length. This pore/slit geometry also satisfies the measured permeability for mannitol. The numerous small circular pores account for 91.25% of TJ NaCl permeability but only 5.0% of TJ water permeability. The infrequent large slit breaks in the TJ account for 95.0% of TJ water permeability but only 8.7% of TJ NaCl permeability. Sucrose and mannitol (4.6- and 3.6-Å radius) can pass through both the large slit breaks and the small pores. For sucrose, 78.3% of the flux is via the slits and 21.7% via the pores; for mannitol, the flux is split nearly evenly between the two pathways, 50.8 and 49.2%. In this ultrastructural model, the TJ water permeability is 21.2% of the entire transepithelial water permeability and thus an order of magnitude greater than that predicted by the single-pore/slit theory (Preisig PA and Berry CA. Am J Physiol Renal Fluid Electrolyte Physiol 249: F124–F131, 1985).


Sign in / Sign up

Export Citation Format

Share Document