pore radius
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 53)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Guo ◽  
Xiaowei Zhang ◽  
Rongze Yu ◽  
Lixia Kang ◽  
Jinliang Gao ◽  
...  

The flow of shale gas in nano scale pores is affected by multiple physical phenomena. At present, the influence of multiple physical phenomena on the transport mechanism of gas in nano-pores is not clear, and a unified mathematical model to describe these multiple physical phenomena is still not available. In this paper, an apparent permeability model was established, after comprehensively considering three gas flow mechanisms in shale matrix organic pores, including viscous slippage Flow, Knudsen diffusion and surface diffusion of adsorbed gas, and real gas effect and confinement effect, and at the same time considering the effects of matrix shrinkage, stress sensitivity, adsorption layer thinning, confinement effect and real gas effect on pore radius. The contribution of three flow mechanisms to apparent permeability under different pore pressure and pore size is analyzed. The effects of adsorption layer thinning, stress sensitivity, matrix shrinkage effect, real gas effect and confinement effect on apparent permeability were also systematically analyzed. The results show that the apparent permeability first decreases and then increases with the decrease of pore pressure. With the decrease of pore pressure, matrix shrinkage, Knudsen diffusion, slippage effect and surface diffusion effect increase gradually. These four effects will not only make up for the permeability loss caused by stress sensitivity and adsorption layer, but also significantly increase the permeability. With the decrease of pore radius, the contribution of slippage flow decreases, and the contributions of Knudsen diffusion and surface diffusion increase gradually. With the decrease of pore radius and the increase of pore pressure, the influence of real gas effect and confinement effect on permeability increases significantly. Considering real gas and confinement effect, the apparent permeability of pores with radius of 5 nm is increased by 13.2%, and the apparent permeability of pores with radius of 1 nm is increased by 61.3%. The apparent permeability model obtained in this paper can provide a theoretical basis for more accurate measurement of permeability of shale matrix and accurate evaluation of productivity of shale gas horizontal wells.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 210
Author(s):  
Ioannis Nikolaos Tsimpanogiannis ◽  
Emmanuel Stamatakis ◽  
Athanasios Konstantinos Stubos

We examine the critical pore radius that results in critical gas saturation during pure methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain critical values for pore sizes above which the production of methane gas is possible. Results shown in the current study correspond to the case when the depression of the dissociation temperature (due to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered. The temperature shift due to confinement in porous media is estimated through the well-known Gibbs-Thompson equation. The particular results are of interest to geological media and particularly in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation temperature on the calculated values of the critical pore sizes for gas production is limited to less than 10% when compared to our earlier study where the porous media effects have been ignored.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8454
Author(s):  
Kexing Li ◽  
Bowen Chen ◽  
Wanfen Pu ◽  
Xueqi Jing ◽  
Chengdong Yuan ◽  
...  

Wettability alteration is one of the most important mechanisms of surfactant flooding. In this work, the combined Amott/USBM (United States Bureau of Mines) method was applied to study the average wettability alteration of initially neutral cores after viscoelastic-surfactant (VES) filtration. The effects of static aging, dynamic aging, VES concentration, filtration flow rate, and pore radius on the alteration of a core’s average wettability were studied. The wettability-alteration trends measured by Amott and USBM were consistent, demonstrating that the overall hydrophilicity of the core was enhanced after VES filtration. The wettability alterations of the core brought about by dynamic aging were more significant than by static aging. The viscoelastic properties of the VES played an important role in altering the wettability. In addition, the ability of the VES to affect the core’s wettability was significantly enhanced when the VES concentration was increased, which was beneficial in increasing VES adsorption on the pore-wall surface, thus altering the overall wettability of the core. Increasing filtration flow rates can destroy those high-viscosity VES aggregates via the higher shear rate. A higher retention of VES makes the core more hydrophilic. The difference in the wettability of cores with different pore radius after VES filtration was not significant. The alteration of average wettability caused by VES in porous media provides a new vision for studying the EOR mechanism of VES.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jin Yan ◽  
Rongchen Zheng ◽  
Peng Chen ◽  
Shuping Wang ◽  
Yunqing Shi

During the development of tight gas reservoir, the irreducible water saturation, rock permeability, and relative permeability change with formation pressure, which has a significant impact on well production. Based on capillary bundle model and fractal theory, the irreducible water saturation model, permeability model, and relative permeability model are constructed considering the influence of water film and stress sensitivity at the same time. The accuracy of this model is verified by results of nuclear magnetic experiment and comparison with previous models. The effects of some factors on irreducible water saturation, permeability, and relative permeability curves are discussed. The results show that the stress sensitivity will obviously reduce the formation permeability and increase the irreducible water saturation, and the existence of water film will reduce the permeability of gas phase. The increase of elastic modulus weakens the stress sensitivity of reservoir. The irreducible water saturation increases, and the relative permeability curve changes little with the increase of effective stress. When the minimum pore radius is constant, the ratio of maximum pore radius to minimum pore radius increases, the permeability increases, the irreducible water saturation decreases obviously, and the two-phase flow interval of relative permeability curve increases. When the displacement pressure increases, the irreducible water saturation decreases, and the interval of two-phase flow increases. These models can calculate the irreducible water saturation, permeability and relative permeability curves under any pressure in the development of tight gas reservoir. The findings of this study can help for better understanding of the productivity evaluation and performance prediction of tight sandstone gas reservoirs.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3929
Author(s):  
Mikhail Y. Laktionov ◽  
Ekaterina B. Zhulina ◽  
Ralf P. Richter ◽  
Oleg V. Borisov

To study conformational transition occuring upon inferior solvent strength in a brush formed by linear or dendritically branched macromolecules tethered to the inner surface of cylindrical or planar (slit-like) pore, a self-consistent field analytical approach is employed. Variations in the internal brush structure as a function of variable solvent strength and pore radius, and the onset of formation of a hollow channel in the pore center are analysed. The predictions of analytical theory are supported and complemented by numerical modelling by a self-consistent field Scheutjens–Fleer method. Scaling arguments are used to study microphase segregation under poor solvent conditions leading to formation of a laterally and longitudinally patterned structure in planar and cylindrical pores, respectively, and the effects of confinement on "octopus-like" clusters in the pores of different geometries.


2021 ◽  
Vol 325 ◽  
pp. 162-167
Author(s):  
Jaroslava Zatloukalová ◽  
Jiří Pazderka ◽  
Petr Lukáš ◽  
Pavel Reiterman

Quantification of water transport properties of concrete is crucial for prediction of the material degradation processes. In case of 80 years ́ old concrete of fortification structures of former Czechoslovakia, its permeability is the determining factor of the scale of degradation. Mercury intrusion porosimetry was used to characterize the porous system of seven existing bunkers from the defence line ”Pražská čára” and to calculate the permeability using model of Bágel and Živica. Results showed the altered structure of the old concrete, characterized by no notable peaks, which mark the critical pore radius most responsible for water intake. The majority of pores are small micropores, which does not contribute much in the water transport. However, calculated permeability is high enough to be the cause of several degradation processes. The performed program also confirmed high variability of permeability properties between individual structures.


2021 ◽  
Author(s):  
Jyoti - ◽  
R. K. Verma

Abstract The present manuscript describes the theoretical understanding of nanoporous alumina based fiber optic sensing structures. The Cavity Maxwell Garnett theory is used to calculate the dielectric functions of the proposed layer. The performance of the proposed sensing structure is evaluated in terms of its sensitivity towards change in the refractive index of the nearby medium. The sharpness of the resonance has also been calculated as an estimation of the performance parameters. It has been observed that the proposed structure is approximately thirteen times more sensitive than the conventional fiber optic sensors. The study has further been extended by replacing the nanolayer of Alumium with the nanolayer of the gold. A comparative study has been provided in terms of the efficiency of the fiber optic probe. The effects of change in pore radius, thickness of the adsorbed medium and shell radius have also been studied.


2021 ◽  
Vol 71 (343) ◽  
pp. e258
Author(s):  
I. Netinger-Grubeša ◽  
M. Benšić ◽  
M. Vračević

The aim of this research is to analyse the reliability of the existing methods, and find new ones, for assessing brick resistance to freeze-thaw cycles. A series of bricks were tested against a range of properties; compressive strength ratios pre- to post-freezing and Maage’s factor, were calculated. Using a database created in this way, an analysis of existing classifiers was carried out and new ones were established based on which bricks could be classified into resistant and non-resistant to freeze-thaw cycles. The median pore radius, the ratio of compressive strengths pre- to post-freezing and the water desorption coefficient at 180-360 minutes proved to be good classifiers with a clearly specified cut-off for the distinction between resistant and non-resistant bricks with an acceptable risk of a wrong decision. The ratio of compressive strengths pre to post freezing and the water desorption coefficient at 180-360 minutes were described using the pore system in the brick.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Li ◽  
Yanmeng Chi ◽  
Shanling Han ◽  
Yanan Miao ◽  
Long Chen

AbstractIn order to construct the geometric models characterizing the real micro pore-fracture structures of nylon-uncured rubber composite, and further compare the distribution law in the pore-fracture of solid (nylon)-gas (pore) two-phases with that of solid (nylon)-viscoelastic body (rubber)-gas (pore) three-phases composite, in this paper, the X-ray three-dimensional (3D) microscope is applied for the nylon material and nylon-rubber composite respectively. By employing the 3D visualization software (Avizo), three-dimensional reconstruction and pore-fracture network model is realized, where the quantitative statistics and comparative analysis are carried out. The results demonstrate that the pore/throat number of nylon material accounting for 20.8%/33.9% are the largest when the pore/throat radius is in the range of 3–4 μm/1–2 μm, respectively, however, the pore/throat number of nylon-rubber composite with the radius 3–4 μm/1–2 μm occupies merely 5.49%/11.3%. Furthermore, the average pore radius of nylon material is believed as larger than that of nylon-rubber composite based on the pore network model, where the pore/throat surface area and pore/throat volume have perfect consistent patterns with that of pore radius. This work will offer a theoretical basis for the investigation of gas seepage capability discrepancy between the solid (nylon) one-phase and solid (nylon)-viscoelastic body (rubber) two-phases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Li ◽  
Laisheng Huang ◽  
Xiaoquan Lv ◽  
Yongjie Ren

AbstractTo determine the unfrozen water content variation characteristics of coal from the low temperature freezing based on the good linear relationship between the amplitude of the nuclear magnetic resonance (NMR) signal and movable water, pulsed NMR technology was used to test water-saturated coal samples and analyze the relationship between the unfrozen water content, the temperature and pore pressure during freeze–thaw from a microscopic perspective. Experimental results show that the swelling stress of the ice destroys the original pore structure during the freezing process, causing the melting point of the pore ice to change, so the unfrozen water content during the melting process presents a hysteresis phenomenon. When phase equilibrium has been established in the freezing process, the unfrozen water is mainly the film water on the pore surface and pore water in pores with pore radius below 10 nm. At this time, the freezing point of the water in the system decreases exponentially as the temperature increases. The micropores of the coal samples from the Jiulishan Coalmine are well-developed, and the macropores and fractures are relatively small, with most pores having a pore radius between 0.1 and 10 nm. The pore water freezing point gradually decreases with the pore radius. When the pore radius decreases to 10 nm, the freezing point of pore water starts to decrease sharply with the decreasing pore radius. When the pore radius reaches 1.54 nm, the pore water freezing point changes as fast as 600 ℃/nm.


Sign in / Sign up

Export Citation Format

Share Document