transverse magnetic polarization
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongliang Li ◽  
Changyi Zhou ◽  
Woo-Bin Lee ◽  
Duk-Yong Choi ◽  
Sang-Shin Lee

Abstract A flat telescope (FTS), which incorporates an all-dielectric metasurface doublet (MD) based on hydrogenated amorphous silicon nanoposts, is proposed and demonstrated to achieve flexibly magnified angular beam steering that is sensitive to both light polarization and deflection direction. Specifically, for transverse-electric-polarized incident beams, the MD exhibits deflection magnification factors of +5 and +2, while for transverse magnetic polarization, the beam is steered in reverse to yield magnification factors of −5 and −2 in the horizontal and vertical directions, respectively. The proposed MD comprises cascaded metalenses, which can invoke polarization-selective transmission phases. The MD which emulates a set of convex and concave lenses renders positively increased beam deflection, whereas the case corresponding to a pair of convex lenses facilitates negatively amplified beam deflection. The essential phase profiles required for embodying the MD are efficiently extracted from its geometric lens counterpart. Furthermore, the implemented FTS, operating in the vicinity of a 1550 nm wavelength, can successfully enable enhanced beam steering by facilitating polarization-sensitive bidirectional deflection amplifications. The proposed FTS can be applied in the development of a miniaturized light detection and ranging system, where the beam scanning range can be effectively expanded in two dimensions.


Author(s):  
Habib Ammari ◽  
Alexander Dabrowski ◽  
Brian Fitzpatrick ◽  
Pierre Millien

AbstractThis paper is concerned with the scattering resonances of open cavities. It is a follow-up of Ammari et al. (ZAMP 71:102, 2020), where the transverse magnetic polarization was assumed. In that case, using the method of matched asymptotic expansions, the leading-order term in the shifts of scattering resonances due to the presence of small particles of arbitrary shapes was derived and the effect of radiation on the perturbations of open cavity modes was characterized. The derivations were formal. In this paper, we consider the transverse electric polarization and prove a small-volume formula for the shifts in the scattering resonances of a radiating dielectric cavity perturbed by small particles. We show a strong enhancement in the frequency shift in the case of subwavelength particles with dipole resonances. We also consider exceptional scattering resonances and perform small-volume asymptotic analysis near them. A significant observation is the large-amplitude splitting of exceptional scattering resonances induced by small particles. Our method in this paper relies on pole-pencil decompositions of volume integral operators.


2018 ◽  
Vol 11 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Yuchen Zhao ◽  
Fang Ren ◽  
Li He ◽  
Jinsheng Zhang ◽  
Yanning Yuan ◽  
...  

AbstractIn this paper, the design of a graded honeycomb radar absorbing structure (RAS) is presented to realize both a wide bandwidth and absorption over a wide range of angles. For both transverse-electric and transverse-magnetic polarization, a fractional bandwidth of more than 118.6% is achieved for at least a 10 dB reflectivity reduction when the incident angle is <45°, an 8 dB reduction when the incident angle is <55° and a 5 dB reduction when the incident angle is <70°. Meanwhile the 10 dB reduction upper angle limit is approximately 30° for the uniform coating honeycomb RAS in the literature, which loses its absorbing ability when the incident angle is larger than 55°. Furthermore, the total thickness of our design is 10.7 mm, which is only approximately 1.29 times that of the theoretical limitation. The good agreement between the calculated, simulated, and measured results demonstrates the validity of this optimization.


Author(s):  
M. V. Berry

In-plane (lateral) and out-of-plane (transverse) shifts in the direction of arbitrarily polarized electromagnetic waves in a denser medium, reflected totally or partially at an interface with a rarer medium, are calculated exactly, in terms of the deviation of the Poynting vector from radial. The shifts are analogous to the Goos–Hänchen and Fedorov–Imbert shifts for beams. There is a transverse shift even for unreflected dipole radiation if the polarization is not linear. With reflection, there is a transverse shift for linear polarization, provided this is not pure transverse electric or transverse magnetic. The contributions from the geometrical ray, the lateral ray that interferes strongly with it, and the large peak at the Brewster angle (for transverse magnetic polarization), are calculated asymptotically far from the geometrical image. At the critical angle, the lowest order asymptotics is inadequate and a more sophisticated treatment is devised, reproducing the exact shifts accurately.


Sign in / Sign up

Export Citation Format

Share Document