exchange repulsion
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Sehr Naseem-Khan ◽  
Jean-Philip Piquemal ◽  
G. Andrés Cisneros

The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFF). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and Exchange-Repulsion energies are now computed with separate frozen molecular densities, and a new dispersion formulation inspired by the SIBFA polFF, which has been implemented to describe the dispersion and charge–transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved, and the importance of the accurate reproduction for each separate contribution.



2020 ◽  
Author(s):  
Eleftherios Lambros ◽  
Filippo Lipparini ◽  
G. Andres Cisneros ◽  
Francesco Paesani

<div> <div> <div> <p>We present a new development in quantum mechanics/molecular mechanics (QM/MM) methods by replacing conventional MM models with data-driven many-body (MB) representations rigorously derived from high-level QM calculations. The new QM/MM approach builds on top of mutually polarizable QM/MM schemes developed for polarizable force fields with inducible dipoles and uses permutationally invariant polynomials to effectively account for quantum- mechanical contributions (e.g., exchange-repulsion, and charge transfer and penetration) that are difficult to describe by classical expressions adopted by conventional MM models. Us- ing the many-body MB-pol and MB-DFT potential energy functions for water, which include explicit 2-body and 3-body terms fitted to reproduce the corresponding CCSD(T) and PBE0 2- body and 3-body energies for water, we demonstrate a smooth energetic transition as molecules are transferred between QM and MM regions, without the need of a transition layer. By effectively elevating the accuracy of both the MM region and the QM/MM interface to that of the QM region, the new QM/MB-MM approach achieves an accuracy comparable to that obtained with a fully QM treatment of the entire system. </p> </div> </div> </div>



2020 ◽  
Author(s):  
Eleftherios Lambros ◽  
Filippo Lipparini ◽  
G. Andres Cisneros ◽  
Francesco Paesani

<div> <div> <div> <p>We present a new development in quantum mechanics/molecular mechanics (QM/MM) methods by replacing conventional MM models with data-driven many-body (MB) representations rigorously derived from high-level QM calculations. The new QM/MM approach builds on top of mutually polarizable QM/MM schemes developed for polarizable force fields with inducible dipoles and uses permutationally invariant polynomials to effectively account for quantum- mechanical contributions (e.g., exchange-repulsion, and charge transfer and penetration) that are difficult to describe by classical expressions adopted by conventional MM models. Us- ing the many-body MB-pol and MB-DFT potential energy functions for water, which include explicit 2-body and 3-body terms fitted to reproduce the corresponding CCSD(T) and PBE0 2- body and 3-body energies for water, we demonstrate a smooth energetic transition as molecules are transferred between QM and MM regions, without the need of a transition layer. By effectively elevating the accuracy of both the MM region and the QM/MM interface to that of the QM region, the new QM/MB-MM approach achieves an accuracy comparable to that obtained with a fully QM treatment of the entire system. </p> </div> </div> </div>



2020 ◽  
Author(s):  
Eleftherios Lambros ◽  
Filippo Lipparini ◽  
G. Andres Cisneros ◽  
Francesco Paesani

<div> <div> <div> <p>We present a new development in quantum mechanics/molecular mechanics (QM/MM) methods by replacing conventional MM models with data-driven many-body (MB) representations rigorously derived from high-level QM calculations. The new QM/MM approach builds on top of mutually polarizable QM/MM schemes developed for polarizable force fields with inducible dipoles and uses permutationally invariant polynomials to effectively account for quantum- mechanical contributions (e.g., exchange-repulsion, and charge transfer and penetration) that are difficult to describe by classical expressions adopted by conventional MM models. Us- ing the many-body MB-pol and MB-DFT potential energy functions for water, which include explicit 2-body and 3-body terms fitted to reproduce the corresponding CCSD(T) and PBE0 2- body and 3-body energies for water, we demonstrate a smooth energetic transition as molecules are transferred between QM and MM regions, without the need of a transition layer. By effectively elevating the accuracy of both the MM region and the QM/MM interface to that of the QM region, the new QM/MB-MM approach achieves an accuracy comparable to that obtained with a fully QM treatment of the entire system. </p> </div> </div> </div>



2020 ◽  
Vol 22 (29) ◽  
pp. 16998-17006
Author(s):  
Justin P. Joyce ◽  
Matthew P. Shores ◽  
Anthony K. Rappè

The complementarity of overlap-induced exchange repulsion and electron correlative dispersion suggests that each is important to a complete understanding of branched hydrocarbon stability.



2020 ◽  
Vol 230 ◽  
pp. 00010
Author(s):  
Pier Luigi Silvestrelli ◽  
Alberto Ambrosetti

We describe a method for including van der Waals (vdW) interactions in Density Functional Theory (DFT) using the Maximally-Localized Wannier functions (MLWFs), which is free from empirical parameters. With respect to the previous DFT/vdW-WF2 version, in the present DFT/vdW-WF2-x approach, the empirical, short-range, damping function is replaced by an estimate of the Pauli exchange repulsion, also obtained by the MLWFs properties. Applications to systems contained in the popular S22 molecular database and to the case of adsorption of Ar on graphite, and Xe and water on graphene, indicate that the new method, besides being more physically founded, also leads to a systematic improvement in the description of systems where vdW interactions play a significant role.



Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 379 ◽  
Author(s):  
Arpita Varadwaj ◽  
Helder Marques ◽  
Pradeep Varadwaj

Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained.



Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3131 ◽  
Author(s):  
Koen Visscher ◽  
William Swope ◽  
Daan Geerke

In this work, we propose an improved QM/MM-based strategy to determine condensed-phase polarizabilities and we use this approach to optimize a new and simple polarizable four-site water model for classical molecular simulation. For the determination of the model value for the polarizability from QM/MM, we show that our proposed consensus-fitting strategy significantly reduces the uncertainty in calculated polarizabilities in cases where the size of the local external electric field is small. By fitting electrostatic, polarization and dispersion properties of our water model based on quantum and/or combined QM/MM calculations, only a single model parameter (describing exchange repulsion) is left for empirical calibration. The resulting model performs well in describing relevant pure-liquid thermodynamic and transport properties, which illustrates the merit of our approach to minimize the number of free variables in our model.



Sign in / Sign up

Export Citation Format

Share Document