scholarly journals Improvement of the Gaussian Electrostatic Model by Separate Fitting of Coulomb and Exchange-Repulsion Densities and Implementation of a new Dispersion term

Author(s):  
Sehr Naseem-Khan ◽  
Jean-Philip Piquemal ◽  
G. Andres Cisneros
2021 ◽  
Author(s):  
Sehr Naseem-Khan ◽  
Jean-Philip Piquemal ◽  
G. Andrés Cisneros

The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFF). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and Exchange-Repulsion energies are now computed with separate frozen molecular densities, and a new dispersion formulation inspired by the SIBFA polFF, which has been implemented to describe the dispersion and charge–transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved, and the importance of the accurate reproduction for each separate contribution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Tetteh ◽  
Albert Ofori

Abstract The M–Ccarbene bond in metal (M) complexes involving the imidazol-2-ylidene (Im) ligand has largely been described using the σ-donor only model with donation of σ electrons from the sp-hybridized orbital of the carbene carbon into vacant orbitals on the metal centre. Analyses of the M–Ccarbene bond in a series of group IA, IIA and IIIA main group metal complexes show that the M-Im interactions are mostly electrostatic with the M–Ccarbene bond distances greater than the sum of the respective covalent radii. Estimation of the binding energies of a series of metal hydride/fluoride/chloride imidazol-2-ylidene complexes revealed that the stability of the M–Ccarbene bond in these complexes is not always commensurate with the σ-only electrostatic model. Further natural bond orbital (NBO) analyses at the DFT/B3LYP level of theory revealed substantial covalency in the M–Ccarbene bond with minor delocalization of electron density from the lone pair electrons on the halide ligands into antibonding molecular orbitals on the Im ligand. Calculation of the thermodynamic stability of the M–Ccarbene bond showed that these interactions are mostly endothermic in the gas phase with reduced entropies giving an overall ΔG > 0.


1981 ◽  
Vol 75 (11) ◽  
pp. 5385-5388 ◽  
Author(s):  
Russell J. Boyd ◽  
George E. Markus
Keyword(s):  

2001 ◽  
Vol 48 (1) ◽  
pp. 134-143 ◽  
Author(s):  
L. Dvorson ◽  
Meng Ding ◽  
A.I. Akinwande

2002 ◽  
Vol 367 (1) ◽  
pp. 77-85 ◽  
Author(s):  
D. Shyamali WIMALASENA ◽  
Samantha P. JAYATILLAKE ◽  
Donovan C. HAINES ◽  
Kandatege WIMALASENA

A series of fumarate analogues has been used to explore the molecular mechanism of the activation of dopamine β-mono-oxygenase by fumarate. Mesaconic acid (MA) and trans-glutaconic acid (TGA) both activate the enzyme at low concentrations, similar to fumarate. However, unlike fumarate, TGA and MA interact effectively with the oxidized enzyme to inhibit it at concentrations of 1—5mM. Monoethylfumarate (EFum) does not activate the enzyme, but inhibits it. In contrast with TGA and MA, however, EFum inhibits the enzyme by interacting with the reduced form. The saturated dicarboxylic acid analogues, the geometric isomer and the diamide of fumaric acid do not either activate or inhibit the enzyme. The phenylethylamine—fumarate conjugate, N-(2-phenylethyl)fumaramide (PEA-Fum), is an 600-fold more potent inhibitor than EFum and behaves as a bi-substrate inhibitor for the reduced enzyme. The amide of PEA-Fum behaves similarly, but with an inhibition potency 20-fold less than that of PEA-Fum. The phenylethylamine conjugates of saturated or geometric isomers of fumarate do not inhibit the enzyme. Based on these findings and on steady-state kinetic analysis, an electrostatic model involving an interaction between the amine group of the enzyme-bound substrate and a carboxylate group of fumarate is proposed to account for enzyme activation by fumarate. Furthermore, in light of the recently proposed model for the similar copper enzyme, peptidylglycine α-hydroxylating mono-oxygenase, the above electrostatic model suggests that fumarate may also play a role in efficient electron transfer between the active-site copper centres of dopamine β-mono-oxygenase.


Sign in / Sign up

Export Citation Format

Share Document