maslov index
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)



Author(s):  
Paul Cornwell ◽  
Christopher K. R. T. Jones ◽  
Claire Kiers
Keyword(s):  


Author(s):  
Vivina L. Barutello ◽  
Daniel Offin ◽  
Alessandro Portaluri ◽  
Li Wu

AbstractClassical Sturm non-oscillation and comparison theorems as well as the Sturm theorem on zeros for solutions of second order differential equations have a natural symplectic version, since they describe the rotation of a line in the phase plane of the equation. In the higher dimensional symplectic version of these theorems, lines are replaced by Lagrangian subspaces and intersections with a given line are replaced by non-transversality instants with a distinguished Lagrangian subspace. Thus the symplectic Sturm theorems describe some properties of the Maslov index. Starting from the celebrated paper of Arnol’d on symplectic Sturm theory for optical Hamiltonians, we provide a generalization of his results to general Hamiltonians. We finally apply these results for detecting some geometrical information about the distribution of conjugate and focal points on semi-Riemannian manifolds and for studying the geometrical properties of the solutions space of singular Lagrangian systems arising in Celestial Mechanics.



2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Naohisa Sueishi ◽  
Syo Kamata ◽  
Tatsuhiro Misumi ◽  
Mithat Ünsal

Abstract There are two well-known approaches to studying nonperturbative aspects of quantum mechanical systems: saddle point analysis of the partition functions in Euclidean path integral formulation and the exact-WKB analysis based on the wave functions in the Schrödinger equation. In this work, based on the quantization conditions obtained from the exact-WKB method, we determine the relations between the two formalism and in particular show how the two Stokes phenomena are connected to each other: the Stokes phenomenon leading to the ambiguous contribution of different sectors of the path integral formulation corresponds to the change of the “topology” of the Stoke curves in the exact-WKB analysis. We also clarify the equivalence of different quantization conditions including Bohr-Sommerfeld, path integral and Gutzwiller’s ones. In particular, by reorganizing the exact quantization condition, we improve Gutzwiller’s analysis in a crucial way by bion contributions (incorporating complex periodic paths) and turn it into an exact result. Furthermore, we argue the novel meaning of quasi-moduli integral and provide a relation between the Maslov index and the intersection number of Lefschetz thimbles.



Author(s):  
Gustavo Granja ◽  
Yael Karshon ◽  
Milena Pabiniak ◽  
Sheila Sandon

Abstract Givental’s non-linear Maslov index, constructed in 1990, is a quasimorphism on the universal cover of the identity component of the contactomorphism group of real projective space. This invariant was used by several authors to prove contact rigidity phenomena such as orderability, unboundedness of the discriminant and oscillation metrics, and a contact geometric version of the Arnold conjecture. In this article, we give an analogue for lens spaces of Givental’s construction and its applications.



2020 ◽  
Vol 148 (8) ◽  
pp. 3517-3526
Author(s):  
Henrique Vitório


Author(s):  
Yunhyung Cho ◽  
Yoosik Kim

Abstract In this paper, we give a formula for the Maslov index of a gradient holomorphic disk, which is a relative version of the Chern number formula of a gradient holomorphic sphere for a Hamiltonian $S^1$-action. Using the formula, we classify all monotone Lagrangian fibers of Gelfand–Cetlin systems on partial flag manifolds.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Marek Izydorek ◽  
Joanna Janczewska ◽  
Nils Waterstraat
Keyword(s):  


2019 ◽  
Vol 150 (1) ◽  
pp. 517-548
Author(s):  
Paul Cornwell ◽  
Christopher K. R. T. Jones

AbstractWe consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.



Sign in / Sign up

Export Citation Format

Share Document