orbit modeling
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 2)

2022 ◽  
Vol 924 (2) ◽  
pp. 87
Author(s):  
J. Christopher Mihos ◽  
Patrick R. Durrell ◽  
Elisa Toloba ◽  
Patrick Côté ◽  
Laura Ferrarese ◽  
...  

Abstract We use deep Hubble Space Telescope imaging to derive a distance to the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615 using the tip of the red giant branch (TRGB) distance estimator. We detect 5023 stars within the galaxy, down to a 50% completeness limit of F814W ≈ 28.0, using counts in the surrounding field to correct for contamination due to background sources and Virgo intracluster stars. We derive an extinction-corrected F814W tip magnitude of m tip , 0 = 27.19 − 0.05 + 0.07 , yielding a distance of d = 17.7 − 0.4 + 0.6 Mpc. This places VCC 615 on the far side of the Virgo Cluster (d Virgo = 16.5 Mpc), at a Virgocentric distance of 1.3 Mpc and near the virial radius of the main body of Virgo. Coupling this distance with the galaxy’s observed radial velocity, we find that VCC 615 is on an outbound trajectory, having survived a recent passage through the inner parts of the cluster. Indeed, our orbit modeling gives a 50% chance the galaxy passed inside the Virgo core (r < 620 kpc) within the past gigayear, although very close passages directly through the cluster center (r < 200 kpc) are unlikely. Given VCC 615's undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by the Virgo cluster tides. Finally, we also describe the serendipitous discovery of a nearby Virgo dwarf galaxy projected 90″ (7.2 kpc) away from VCC 615.


2021 ◽  
Vol 13 (22) ◽  
pp. 4634
Author(s):  
Enzhe Tao ◽  
Nannan Guo ◽  
Kexin Xu ◽  
Bin Wang ◽  
Xuhua Zhou

Satellite laser ranging (SLR) observations provide an independent validation of the global navigation satellite system (GNSS) orbits derived using microwave measurements. SLR residuals have also proven to be an important indicator of orbit radial accuracy. In this study, SLR validation is conducted for the precise orbits of eight Galileo satellites covering four to eight years (the current longest span), provided by multiple analysis centers (ACs) participating in the multi-GNSS experiment (MGEX). The purpose of this long-term analysis (the longest such study to date), is to provide a comprehensive evaluation of orbit product quality, its influencing factors, and the effect of perturbation model updates on precise orbit determination (POD) processing. A conventional ECOM solar radiation pressure (SRP) model was used for POD. The results showed distinct periodic variations with angular arguments in the SRP model, implying certain defects in the ECOM system. Updated SRP descriptions, such as ECOM2 or the Box-Wing model, led to significant improvements in SLR residuals for orbital products from multiple ACs. The standard deviation of these residuals decreased from 8–10 cm, before the SRP update, to about 3 cm afterward. The systematic bias of the residuals was also reduced by 2–4 cm and the apparent variability decreased significantly. In addition, the effects of gradual SRP model updates in the POD were evident in orbit comparisons. Orbital differences between ACs in the radial direction were reduced from the initial 10 cm to better than 3 cm, which is consistent with the results of SLR residual analysis. These results suggest SLR validation to be a powerful technique for evaluating the quality of POD strategies in GNSS orbits. Furthermore, this study has demonstrated that perturbation models, such as SRP, provide a better orbit modeling for the Galileo satellites.


2020 ◽  
Author(s):  
Andrzej Bobojć

&lt;p&gt;One of the valuable products of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is a centimeter-accuracy orbit of the GOCE satellite called the precise science orbit (PSO). This orbit, delivered by the European Space Agency (ESA), was the reference for the GOCE orbit modeling using the piecewise constant acceleration approach. Besides initial conditions, the piecewise constant accelerations (i.e. empirical accelerations) were estimated in the radial, along-track and cross-track direction, employing the dedicated package called Torun Orbit Processor (TOP). The TOP software is based on the classical least squares adjustment including the Cowell 8-th order numerical integration for an orbit prediction and the orbit improvement module, taking into account the gravity field model and the background models (BM) describing gravitational and non-gravitational perturbing forces. The positions of GOCE satellite on the reduced-dynamic PSO orbit were treated as observations in the orbit improvement process. A measure of the fit of estimated arcs and their accuracy was the RMS of the residuals between the estimated orbits and the corresponding reference ones. Different variants of the orbit estimation were obtained for the shorter&amp;#160; arcs (22.5, 45, 90 and 180 minutes)&amp;#160; and for the longer 1-day arcs. The solution variants were determined for different numbers of the estimated piecewise constant accelerations. Moreover, these numbers were different for the radial, along-track and cross-track direction. The obtained solutions depend on a kind of computational mode &amp;#8211; with and without the BM models in the GOCE orbit modeling using the estimated piecewise constant accelerations. Additionally, for selected solutions, the distributions of the residuals in the aforementioned directions along the estimated arcs are presented.&amp;#160;&lt;/p&gt;


2020 ◽  
Vol 635 ◽  
pp. A20
Author(s):  
Eduardo Vitral ◽  
Gary A. Mamon

The Sérsic model shows a close fit to the surface brightness (or surface density) profiles of elliptical galaxies and galaxy bulges, and possibly also those of dwarf spheroidal galaxies and globular clusters. The deprojected density and mass profiles are important for many astrophysical applications, in particular for mass-orbit modeling of these systems. However, the exact deprojection formula for the Sérsic model employs special functions that are not available in most computer languages. We show that all previous analytical approximations to the 3D density profile are imprecise at low Sérsic index (n ≲ 1.5). We derived a more precise analytical approximation to the deprojected Sérsic density and mass profiles by fitting two-dimensional tenth-order polynomials to the residuals of the analytical approximations by Lima Neto et al. (1999, MNRAS, 309, 481; LGM) for these profiles, relative to the numerical estimates. Our LGM-based polynomial fits have typical relative precision better than 0.2% for both density and mass profiles, for Sérsic indices 0.5 ≤ n ≤ 10 and radii 0.001 <  r/Re <  1000. Our approximation is much more precise than previously published approximations (except, in some models, for a few discrete values of the index). An appendix compares the deprojected Sérsic profiles with those of other popular simple models.


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Xingxing Li ◽  
Keke Zhang ◽  
Xiangguang Meng ◽  
Qian Zhang ◽  
Wei Zhang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 631 ◽  
pp. A131 ◽  
Author(s):  
G. A. Mamon ◽  
A. Cava ◽  
A. Biviano ◽  
A. Moretti ◽  
B. Poggianti ◽  
...  

The orbital shapes of galaxies of different classes are a probe of their formation and evolution. The Bayesian MAMPOSSt mass-orbit modeling algorithm is used to jointly fit the distribution of elliptical, spiral-irregular, and lenticular galaxies in projected phase space, on three pseudo-clusters (built by stacking the clusters after re-normalizing their positions and velocities) of 54 regular clusters from the Wide-field Nearby Galaxy-clusters Survey (WINGS), with at least 30 member velocities. Our pseudo-clusters (i.e., stacks) contain nearly 5000 galaxies with available velocities and morphological types. Thirty runs of MAMPOSSt with different priors are presented. The highest MAMPOSSt likelihoods are obtained for generalized Navarro-Frenk-White (NFW) models with steeper inner slope, free-index Einasto models, and double NFW models for the cluster and the brightest cluster galaxy. However, there is no strong Bayesian evidence for a steeper profile than the NFW model. The mass concentration matches the predictions from cosmological simulations. Ellipticals usually best trace the mass distribution while S0s are close. Spiral galaxies show increasingly elongated orbits at increasing radii, as do S0s on two stacks, and ellipticals on one stack. The inner orbits of all three types in the three stacks are consistent with isotropy. Spiral galaxies should transform rapidly into early-types given their much larger extent in clusters. Elongated outer orbits are expected for the spirals, a consequence of their recent radial infall into the cluster. The less elongated orbits we find for early-types could be related to the longer time spent by these galaxies in the cluster. We demonstrate that two-body relaxation is too slow to explain the inner isotropy of the early types, which suggests that inner isotropy is the consequence of violent relaxation during major cluster mergers or dynamical friction and tidal braking acting on subclusters. We propose that the inner isotropy of the short-lived spirals is a selection effect of spirals passing only once through pericenter before being transformed into early-type morphologies.


2018 ◽  
Vol 58 (8) ◽  
pp. 082029 ◽  
Author(s):  
D. Kim ◽  
M. Podestà ◽  
D. Liu ◽  
F.M. Poli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document