machining vibrations
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 6)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 263 (2) ◽  
pp. 4088-4099
Author(s):  
Florian Trautmann ◽  
Björn Knöfel ◽  
Welf-Guntram Drossel ◽  
Jan Troge ◽  
Markus Freund ◽  
...  

Intuition enables experienced machine operators to detect production errors and to identify their specific sources. A prominent example in machining are chatter marks caused by machining vibrations. The operator's assessment, if the process runs stable or not, is not exclusively based on technical parameters such as rotation frequency, tool diameter, or the number of teeth. Because the human ear is a powerful feature extraction and classification device, this study investigates to what degree the hearing sensation influences the operators decision making. A steel machining process with a design of experiments (DOE)-based variation of process parameters was conducted on a milling machine. Microphone and acceleration sensors recorded machining vibrations and machine operators documented their hearing sensation via survey sheet. In order to obtain the optimal dataset for calculating various psychoacoustic characteristics, a principle component analysis was conducted. The subsequent correlation analysis of all sensor data and the operator information suggest that psychoacoustic characteristics such as tonality and loudness are very good indicators of the process quality perceived by the operator. The results support the application of psychoacoustic technology for machine and process monitoring.


Author(s):  
Yaser Mohammadi ◽  
Keivan Ahmadi

Abstract Excessive and unstable vibrations that are caused by the machining forces are among the most critical problems that limit the use of industrial robots instead of CNC machine tools. Reduction and control of robot’s vibrations during machining require accurate models of the robot’s vibration response to the dynamic forces exerted at the Tool Centre Point (TCP) where the cutting tool interacts with the workpiece material. The existing models of vibrations in robotic machining have been formed by assuming the linearity of the dynamic response at the TCP. In this paper, the accuracy of this assumption is investigated experimentally, and the results show that the dynamic response at the TCP is strongly nonlinear. An experimental procedure is presented to identify the nonlinearities by employing the first-order Frequency Response Functions (FRFs) measured using various input force excitations. Nonlinear Complex Mode Analysis is then used to extract the modal parameters of the system when its dynamics is linearized around a harmonic response with a constant amplitude. The extracted modal parameters strongly depend on the amplitude of the applied force and the resulting vibrations. This study highlights the need for considering the nonlinearities of the structural dynamics of industrial robots in modelling machining vibrations.


2020 ◽  
pp. 107754632093347 ◽  
Author(s):  
Francesco Aggogeri ◽  
Angelo Merlo ◽  
Nicola Pellegrini

This study presents a combined feedback–feedforward adaptive regulator applied to an active vibration control tool holder platform to contain the effect of machining vibrations. The proposed mechatronic solution can be integrated in a milling machine tool as an interface between the beam ( Z-axis) and the tool holder. The aim is to counteract vibrations in the broadband frequency range (100 Hz–900 Hz), controlling the tool position in real time. The active vibration control system is based on the harmonic steady-state concept due to the sinusoidal representation of the disturbance signals. The study focuses on the regulator architecture and the main logics applied to satisfy the required performance. A full investigation is executed through simulations and experimental campaigns, proving the disturbance reduction. The active vibration control system is implemented on a 4-axis machine tool and validated using multitonal disturbances. The system is evaluated in compensating a set of undesired effects, such as vibrations generated by unbalanced tools or hard material cutting processes. The obtained results show a maximum reduction of the vibration amplitude by 43.7% at the critical frequency.


Author(s):  
Mihir Joshi ◽  
Matthias Weigold ◽  
Michael Schoell

Abstract The use of cutting tool systems with a high slenderness ratio is encountered in the machining of deep cavities in the mechanical engineering industry, especially in the manufacturing of tools and dies. Cutting tool systems with a large slenderness ratio, owing to their dynamic compliance, are prone to vibrations during machining processes. These vibrations affect the quality of the machining process and the life of machine components. Integration of a vibration absorber in the cutting tool system helps in the reduction of machining vibrations. The reduction in vibrations is due to a shift in the resonance frequency of the modified system. This experimental study presents the identification of design possibilities of a vibration absorber for integration in the cutting tool system. The mass and geometry of the vibration absorber are varied and its integration in the milling chuck is explored. Firstly, experimental modal analysis is conducted to determine the effects of the dynamic vibration absorber on the frequency response function of the modified cutting tool system. Secondly, the effects of the dynamic vibration absorber on the machining process for a range of technology parameters are illustrated. During the machining process, the cutting forces are measured using a three-component dynamometer in time domain. Finally, the results are evaluated based on process quality, i.e. surface roughness and analysis of cutting force signal in the frequency domain. This study provides an understanding of the relationship between the mass and the geometry of the vibration absorber integrated in the cutting tool system and their influence on process stability.


Sign in / Sign up

Export Citation Format

Share Document