paediatric liver disease
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1837
Author(s):  
Rebecca Jeyaraj ◽  
Kirsten McKay Bounford ◽  
Nicola Ruth ◽  
Carla Lloyd ◽  
Fiona MacDonald ◽  
...  

Many inherited conditions cause cholestasis in the neonate or infant. Next-generation sequencing methods can facilitate a prompt diagnosis in some of these cases; application of these methods in patients with liver diseases of unknown cause has also uncovered novel gene-disease associations and improved our understanding of physiological bile secretion and flow. By helping to define the molecular basis of certain cholestatic disorders, these methods have also identified new targets for therapy as well patient subgroups more likely to benefit from specific therapies. At the same time, sequencing methods have presented new diagnostic challenges, such as the interpretation of single heterozygous genetic variants. This article discusses those challenges in the context of neonatal and infantile cholestasis, focusing on difficulties in predicting variant pathogenicity, the possibility of other causal variants not identified by the genetic screen used, and phenotypic variability among patients with variants in the same genes. A prospective, observational study performed between 2010–2013, which sequenced six important genes (ATP8B1, ABCB11, ABCB4, NPC1, NPC2 and SLC25A13) in an international cohort of 222 patients with infantile liver disease, is given as an example of potential benefits and challenges that clinicians could face having received a complex genetic result. Further studies including large cohorts of patients with paediatric liver disease are needed to clarify the spectrum of phenotypes associated with, as well as appropriate clinical response to, single heterozygous variants in cholestasis-associated genes.


2018 ◽  
Author(s):  
DH Wilson ◽  
RP Mellin ◽  
NT Younger ◽  
EJ Jarman ◽  
A Raven ◽  
...  

AbstractCholangiopathies, or biliary diseases, account for a significant proportion of adult and paediatric liver disease. In these pathologies, iterative cycles of damage and repair result in the development of a regenerative microenvironment surrounding the bile ducts, which orchestrates both epithelial proliferation and also biliary fibrosis. Ultimately, fibrosis at the cost of repair results in cholestasis and liver failure, necessitating liver transplantation. Whilst the fibrogenic mechanisms in hepatocellular disease have been widely studied, little is known about the processes that regulate biliary scarring. We sought to determine how the injured biliary epithelium communicates to adjacent stromal cells to regulate scar formation, and to identify therapeutically targetable pathways that could be inhibited to reduce biliary scarring, whilst maintaining the pro-regenerative stroma. Using human tissue, bile duct organoids and animal models of biliary disease, we show that non-canonical Wnt signalling is important in initiating biliary scarring. This process is driven by myeloid Wnt5a and acts through epithelial Vangl2, which is upstream of Jnk/cJun signalling. Activation of this pathway drives a pro-fibrotic signalling process which instructs portal fibroblasts to synthesise collagen. Finally, we determine that therapeutic Wnt ligand inhibition reduces biliary scarring, identifying non-canonical Wnt signalling as a novel target for anti-fibrotic therapy in cholestatic biliary disease.


2016 ◽  
Vol 17 (11) ◽  
pp. 1795 ◽  
Author(s):  
Diego Calvopina ◽  
Miranda Coleman ◽  
Peter Lewindon ◽  
Grant Ramm

2016 ◽  
Vol 101 (9) ◽  
pp. 854-859 ◽  
Author(s):  
Maria Magnusson ◽  
Vera Ignjatovic ◽  
Winita Hardikar ◽  
Paul Monagle

Children with liver disease can develop severe bleeding episodes and thrombosis. Liver failure usually results in decreased levels of procoagulant and anticoagulant factors. Additional risk factors, including changes in vascular flow and endothelial function, are of importance for the development of bleeding or thrombosis in individual vascular beds. Detailed studies of haemostatic disturbances in the setting of paediatric liver disease are sparse and extrapolation from adult studies is common. The spectrum of liver diseases and the haemostatic system differs between children and adults. Specific paediatric liver diseases are reported to have more distinctive effects on haemostasis and the risk of bleeding and/or thrombosis. Conclusion: we propose a model regarding haemostasis in paediatric liver disease, taking into account a number of specific variables and mechanisms, as well as the type of liver disease, which will provide a framework for clinical decision-making in these complex patients.


Sign in / Sign up

Export Citation Format

Share Document