systemic filling
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roberto Alberto De Blasi ◽  
Stefano Finazzi

AbstractWe developed a method for measuring in vivo venular volumes and the mean systemic filling pressure in the limbs using near-infrared spectroscopy (NIRS). We aimed to validate the NIRS methodology by comparing two independent methods of calculation based on different physiological approaches. Pressure–volumes (P–V) curves were recorded following graded venous occlusion on the forearm. Values from a P–V curves analysis model (method 1) were compared with data derived from a resistor-capacitance calculation model (method 2) based on arterial pressure and venous compliance. We tested these methods on 10 healthy participants at rest and during exercise and on 6 severely ill patients. Results from method 1 were comparable with those calculated by method 2. Venular volumes calculated using method 1 correlated linearly with those calculated using method 2 both in participants (R2 = 0.98) and in patients (R2 = 0.94). A good agreement between methods was shown with few values out of the range of ± 1.96 standard deviation. Our findings added mathematical consistency for the NIRS methodology validation in the venular P–V assessment with no flow interruption. Further research will be required to confirm the relevance of the methodology in the clinical setting.


Author(s):  
Loek P.B. Meijs ◽  
Joris van Houte ◽  
Bente C. M. Conjaerts ◽  
Alexander J. G. H. Bindels ◽  
Arthur Bouwman ◽  
...  

AbstractMean systemic filling pressure (Pms) is a promising parameter in determining intravascular fluid status. Pms derived from venous return curves during inspiratory holds with incremental airway pressures (Pms-Insp) estimates Pms reliably but is labor-intensive. A computerized algorithm to calculate Pms (Pmsa) at the bedside has been proposed. In previous studies Pmsa and Pms-Insp correlated well but with considerable bias. This observational study was performed to validate Pmsa with Pms-Insp in cardiac surgery patients. Cardiac output, right atrial pressure and mean arterial pressure were prospectively recorded to calculate Pmsa using a bedside monitor. Pms-Insp was calculated offline after performing inspiratory holds. Intraclass-correlation coefficient (ICC) and assessment of agreement were used to compare Pmsa with Pms-Insp. Bias, coefficient of variance (COV), precision and limits of agreement (LOA) were calculated. Proportional bias was assessed with linear regression. A high degree of inter-method reliability was found between Pmsa and Pms-Insp (ICC 0.89; 95%CI 0.72–0.96, p = 0.01) in 18 patients. Pmsa and Pms-Insp differed not significantly (11.9 mmHg, IQR 9.8–13.4 vs. 12.7 mmHg, IQR 10.5–14.4, p = 0.38). Bias was −0.502 ± 1.90 mmHg (p = 0.277). COV was 4% with LOA –4.22 − 3.22 mmHg without proportional bias. Conversion coefficient Pmsa ➔ Pms-Insp was 0.94. This assessment of agreement demonstrates that the measures Pms-Insp and the computerized Pmsa-algorithm are interchangeable (bias −0.502 ± 1.90 mmHg with conversion coefficient 0.94). The choice of Pmsa is straightforward, it is non-interventional and available continuously at the bedside in contrast to Pms-Insp which is interventional and calculated off-line. Further studies should be performed to determine the place of Pmsa in the circulatory management of critically ill patients. (www.clinicaltrials.gov; TRN NCT04202432, release date 16-12-2019; retrospectively registered).Clinical Trial Registrationwww.ClinicalTrials.gov, TRN: NCT04202432, initial release date 16-12-2019 (retrospectively registered).


Sign in / Sign up

Export Citation Format

Share Document