imprinting center
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kaihui Zhang ◽  
Shu Liu ◽  
Wenjun Gu ◽  
Yuqiang Lv ◽  
Haihua Yu ◽  
...  

Prader–Willi syndrome (PWS) is a complex genetic syndrome caused by the loss of function of genes in 15q11-q13 that are subject to regulation by genomic imprinting and expressed from the paternal allele only. The main clinical features of PWS patients are hypotonia during the neonatal and infantile stages, accompanied by delayed neuropsychomotor development, hyperphagia, obesity, hypogonadism, short stature, small hands and feet, mental disabilities, and behavioral problems. However, PWS has a clinical overlap with other disorders, especially those with other gene variations or chromosomal imbalances but sharing part of the similar clinical manifestations with PWS, which are sometimes referred to as Prader–Willi syndrome-like (PWS-like) disorders. Furthermore, it is worth mentioning that significant obesity as a consequence of hyperphagia in PWS usually develops between the ages of 1 and 6 years, which makes early diagnosis difficult. Thus, PWS is often not clinically recognized in infants and, on the other hand, may be wrongly suspected in obese and intellectually disabled patients. Therefore, an accurate investigation is necessary to differentiate classical PWS from PWS-like phenotypes, which is imperative for further treatment. For PWS, it is usually sporadic, and very rare family history and affected siblings have been described. Here, we report the clinical and molecular findings in a three-generation family with a novel 550-kb microdeletion affecting the chromosome 15 imprinting center (IC). Overall, the present study finds that the symptoms of our patient are somewhat different from those of typical PWS cases diagnosed and given treatment in our hospital. The familial occurrence and clinical features were challenging to our diagnostic strategy. The microdeletion included a region within the complex small nuclear ribonucleoprotein polypeptide protein N (SNRPN) gene locus encompassing the PWS IC and was identified by using a variety of techniques. Haplotype studies suggest that the IC microdeletion was vertically transmitted from an unaffected paternal grandmother to an unaffected father and then caused PWS in two sibling grandchildren when the IC microdeletion was inherited paternally. Based on the results of our study, preimplantation genetic diagnosis (PGD) was applied successfully to exclude imprinting deficiency in preimplantation embryos before transfer into the mother’s uterus. Our study may be especially instructive regarding accurate diagnosis, differential diagnosis, genetic counseling, and PGD for familial PWS patients.


2020 ◽  
Vol 98 (4) ◽  
pp. 418-419
Author(s):  
Thomas Eggermann ◽  
Florian Kraft ◽  
Katja Kloth ◽  
Eva Klopocki ◽  
Irina Hüning ◽  
...  

2019 ◽  
Vol 08 (04) ◽  
pp. 226-230
Author(s):  
Abraham Urzua ◽  
Sofia Burattini ◽  
Constanza Pinochet ◽  
Felipe Benavides ◽  
Gabriela M. Repetto

AbstractBeckwith–Wiedemann syndrome (BWS) is characterized by overgrowth and increased risk of embryonic tumors. It results from alterations in genes controlled by imprinting centers H19DMR (Imprinting Center [IC] 1) and KvDMR (IC2). Strategies for diagnostic confirmation include methylation analysis and CDKN1C sequencing. We present a newborn with placentomegaly, hyperinsulinism and adrenal cytomegaly, but no typical external features of BWS. The patient had normal genetic studies in blood. However, adrenal and liver tissues showed hypermethylation of IC1 and hypomethylation of IC2. Microsatellite analysis confirmed mosaic paternal uniparental disomy. This study demonstrates the importance of analyzing additional tissues to reduce underdiagnosis of somatic mosaicism in BWS.


Sign in / Sign up

Export Citation Format

Share Document