solvation theory
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Franz Waibl ◽  
Johannes Kraml ◽  
Monica L. Fernández-Quintero ◽  
Johannes R. Loeffler ◽  
Klaus R. Liedl

AbstractHydration thermodynamics play a fundamental role in fields ranging from the pharmaceutical industry to environmental research. Numerous methods exist to predict solvation thermodynamics of compounds ranging from small molecules to large biomolecules. Arguably the most precise methods are those based on molecular dynamics (MD) simulations in explicit solvent. One theory that has seen increased use is inhomogeneous solvation theory (IST). However, while many applications require accurate description of salt–water mixtures, no implementation of IST is currently able to estimate solvation properties involving more than one solvent species. Here, we present an extension to grid inhomogeneous solvation theory (GIST) that can take salt contributions into account. At the example of carbazole in 1 M NaCl solution, we compute the solvation energy as well as first and second order entropies. While the effect of the first order ion entropy is small, both the water–water and water–ion entropies contribute strongly. We show that the water–ion entropies are efficiently approximated using the Kirkwood superposition approximation. However, this approach cannot be applied to the water–water entropy. Furthermore, we test the quantitative validity of our method by computing salting-out coefficients and comparing them to experimental data. We find a good correlation to experimental salting-out constants, while the absolute values are overpredicted due to the approximate second order entropy. Since ions are frequently used in MD, either to neutralize the system or as a part of the investigated process, our method greatly extends the applicability of GIST. The use-cases range from biopharmaceuticals, where many assays require high salt concentrations, to environmental research, where solubility in sea water is important to model the fate of organic substances.


J ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 604-614
Author(s):  
Dipankar Roy ◽  
Andriy Kovalenko

The three-dimensional reference interaction site model of the molecular solvation theory with the Kovalenko–Hirata closure is used to calculate the free energy of solvation of organic solutes in liquid aliphatic ketones. The ketone solvent sites were modeled using a modified united-atom force field. The successful application of these solvation models in calculating ketone–water partition coefficients of a large number of solutes supports the validation and benchmarking reported here.


Physchem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 215-224
Author(s):  
Dipankar Roy ◽  
Devjyoti Dutta ◽  
Andriy Kovalenko

The Three-Dimensional Reference Interaction Site Model (3D-RISM) with Kovalenko−Hirata (KH) closure is applied to calculate the 1,9-Decadiene/Water partition coefficients for a diverse class of compounds. The liquid state of 1,9-Decadiene is represented with the united atom TraPPE force field parameters. The 3D-RISM-KH computed partition functions are in good agreement with the experimental results. Our computational scheme can be used for a quantitative structure partitioning prediction for decadiene-water system, which has been used in membrane-mimicking of the egg-lecithin/water permeability experiments.


2021 ◽  
Vol 22 (10) ◽  
pp. 5061
Author(s):  
Dipankar Roy ◽  
Andriy Kovalenko

The statistical mechanics-based 3-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH) molecular solvation theory has proven to be an essential part of a multiscale modeling framework, covering a vast region of molecular simulation techniques. The successful application ranges from the small molecule solvation energy to the bulk phase behavior of polymers, macromolecules, etc. The 3D-RISM-KH successfully predicts and explains the molecular mechanisms of self-assembly and aggregation of proteins and peptides related to neurodegeneration, protein-ligand binding, and structure-function related solvation properties. Upon coupling the 3D-RISM-KH theory with a novel multiple time-step molecular dynamic (MD) of the solute biomolecule stabilized by the optimized isokinetic Nosé–Hoover chain thermostat driven by effective solvation forces obtained from 3D-RISM-KH and extrapolated forward by generalized solvation force extrapolation (GSFE), gigantic outer time-steps up to picoseconds to accurately calculate equilibrium properties were obtained in this new quasidynamics protocol. The multiscale OIN/GSFE/3D-RISM-KH algorithm was implemented in the Amber package and well documented for fully flexible model of alanine dipeptide, miniprotein 1L2Y, and protein G in aqueous solution, with a solvent sampling rate ~150 times faster than a standard MD simulation in explicit water. Further acceleration in computation can be achieved by modifying the extent of solvation layers considered in the calculation, as well as by modifying existing closure relations. This enhanced simulation technique has proven applications in protein-ligand binding energy calculations, ligand/solvent binding site prediction, molecular solvation energy calculations, etc. Applications of the RISM-KH theory in molecular simulation are discussed in this work.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1793
Author(s):  
Miguel Steiner ◽  
Tanja Holzknecht ◽  
Michael Schauperl ◽  
Maren Podewitz

We developed a quantitative approach to quantum chemical microsolvation. Key in our methodology is the automatic placement of individual solvent molecules based on the free energy solvation thermodynamics derived from molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). This protocol enabled us to rigorously define the number, position, and orientation of individual solvent molecules and to determine their interaction with the solute based on physical quantities. The generated solute–solvent clusters served as an input for subsequent quantum chemical investigations. We showcased the applicability, scope, and limitations of this computational approach for a number of small molecules, including urea, 2-aminobenzothiazole, (+)-syn-benzotriborneol, benzoic acid, and helicene. Our results show excellent agreement with the available ab initio molecular dynamics data and experimental results.


2021 ◽  
pp. 254-286
Author(s):  
Dipankar Roy ◽  
Andriy Kovalenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document