potentiodynamic electrochemical impedance spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Adel Yavarinasab ◽  
Mostafa Abedini ◽  
Hamed Tahmooressi ◽  
Sajjad Janfaza ◽  
Nishat Tasnim ◽  
...  

In this study, we analyzed the application of potentiodynamic electrochemical impedance spectroscopy (PDEIS) for a selective in situ recognition of biological trace elements, i.e., Cr (III), Cu (II), and Fe (III). The electrochemical sensor was developed using the electropolymerization of aniline (Ani) on the surface of the homemade pencil graphite electrodes (PGE) using cyclic voltammetry (CV). The film was overoxidized to diminish the background current. A wide range of potential (V = −0.2 V to 1.0 V) was investigated to study the impedimetric and capacitive behaviour of the PAni/modified PGE. The impedance behaviors of the films were recorded at optimum potentials through electrochemical impedance spectroscopy (EIS) and scrutinized by means of an appropriate equivalent circuit at different voltages and at their corresponding oxidative potentials. The values of the equivalent circuit were used to identify features (charge transfer-resistant and double layer capacitance) that can selectivity distinguish different trace elements with the concentration of 10 μM. The PDEIS spectra represented the highest electron transfer for Cu (II) and Cr (III) in a broad potential range between +0.1 and +0.4 V while the potential V = +0.2 V showed the lowest charge transfer resistance for Fe (III). The results of this paper showed the capability of PDEIS as a complementary tool for conventional CV and EIS measurement for metallic ion sensing.


2018 ◽  
Vol 55 (5B) ◽  
pp. 103
Author(s):  
Bui Thi Thanh Huyen

This paper deals with the effect of anion groups (SO42- and Cl-) on inhibition behaviours of Vietnam orange peel essential oil (OPE) for corrosion process of mild steel in acidic media. The electrochemical techniques (potentiodynamic, electrochemical impedance spectroscopy (EIS)), weight loss and scanning electron microscopy (SEM) analyses are used in this study. The results show that anion groups do not affect the inhibition mechanism of OPE. The OPE ­behaves as mixed inhibitor for mild steel corrosion in both 1N HCl and H2SO4 acid. The inhibition efficiency of OPE in 1N HCl is greater than that in 1N H2SO4 which implies that the adsorption of the inhibitor is influenced by the nature of anions in acidic solutions. Moreover, the OPE inhibits both general and pitting corrosion for mild steel in the acidic media. 


Sign in / Sign up

Export Citation Format

Share Document