scholarly journals The Tutte polynomial and toric Nakajima quiver varieties

Author(s):  
Tarig Abdelgadir ◽  
Anton Mellit ◽  
Fernando Rodriguez Villegas

For a quiver $Q$ with underlying graph $\Gamma$ , we take $ {\mathcal {M}}$ an associated toric Nakajima quiver variety. In this article, we give a direct relation between a specialization of the Tutte polynomial of $\Gamma$ , the Kac polynomial of $Q$ and the Poincaré polynomial of $ {\mathcal {M}}$ . We do this by giving a cell decomposition of $ {\mathcal {M}}$ indexed by spanning trees of $\Gamma$ and ‘geometrizing’ the deletion and contraction operators on graphs. These relations have been previously established in Hausel–Sturmfels [6] and Crawley-Boevey–Van den Bergh [3], however the methods here are more hands-on.

1988 ◽  
Vol 91 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Geir Ellingsrud ◽  
Stein Arild Str�mme

2011 ◽  
Vol 203 ◽  
pp. 1-45 ◽  
Author(s):  
Pramod N. Achar ◽  
Anthony Henderson ◽  
Benjamin F. Jones

AbstractWe continue the study of the closures of GL(V)-orbits in the enhanced nilpotent cone V × N begun by the first two authors. We prove that each closure is an invariant-theoretic quotient of a suitably defined enhanced quiver variety. We conjecture, and prove in special cases, that these enhanced quiver varieties are normal complete intersections, implying that the enhanced nilpotent orbit closures are also normal.


2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Luca Moci

International audience We introduce a multiplicity Tutte polynomial $M(x,y)$, which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that $M(x,y)$ satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial $M(x,y)$, likewise the corresponding polynomials for a hyperplane arrangement are specializations of the ordinary Tutte polynomial. Furthermore, $M(1,y)$ is the Hilbert series of the related discrete Dahmen-Micchelli space, while $M(x,1)$ computes the volume and the number of integral points of the associated zonotope. On introduit un polynôme de Tutte avec multiplicité $M(x, y)$, qui généralise le polynôme de Tutte ordinaire et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons que $M(x, y)$ satisfait une récurrence de "deletion-restriction'' et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d'un arrangement torique sont des spécialisations du polynôme associé $M(x, y)$, de même que les polynômes correspondants pour un arrangement d'hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, $M(1, y)$ est la série de Hilbert de l'espace discret de Dahmen-Micchelli associé, et $M(x, 1)$ calcule le volume et le nombre de points entiers du zonotope associé.


1985 ◽  
Vol 26 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Howard Hiller

Let G be a compact, simply-connected Lie group. The cohomology of the loop space ΏG has been described by Bott, both in terms of a cell decomposition [1] and certain homogeneous spaces called generating varieties [2]. It is possible to view ΏG as an infinite dimensional “Grassmannian” associated to an appropriate infinite dimensional group, cf. [3], [7]. From this point of view the above cell-decomposition of Bott arises from a Bruhat decomposition of the associated group. We choose a generator H ∈ H2(ΏG, ℤ) and call it the hyperplane class. For a finite-dimensional Grassmannian the highest power of H carries geometric information about the variety, namely, its degree. An analogous question for ΏG is: What is the largest integer Nk = Nk(G) which divides Hk ∈ H2k(ΏG, ℤ)?Of course, if G = SU(2) = S3, one knows Nk = h!. In general, the deviation of Nk from k! measures the failure of H to generate a divided polynomial algebra in H*(ΏG, ℤ).


2017 ◽  
Vol 82 (1) ◽  
pp. 120-136 ◽  
Author(s):  
LUCK DARNIÈRE ◽  
IMMANUEL HALPUCZOK

AbstractWe prove that forp-optimal fields (a very large subclass ofp-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7]. We derive from it the existence of definable Skolem functions and strongp-minimality. Then we turn to stronglyp-minimal fields satisfying the Extreme Value Property—a property which in particular holds in fields which are elementarily equivalent to ap-adic one. For such fieldsK, we prove that every definable subset ofK×Kdwhose fibers overKare inverse images by the valuation of subsets of the value group is semialgebraic. Combining the two we get a preparation theorem for definable functions onp-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are in definable bijection iff they have the same dimension.


10.37236/8664 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Aram Bingham ◽  
Özlem Uğurlu

We examine Borel subgroup orbits in the classical symmetric space of type $CI$, which are parametrized by skew symmetric $(n, n)$-clans. We describe bijections between such clans, certain weighted lattice paths, and pattern-avoiding signed involutions, and we give a cell decomposition of the symmetric space in terms of collections of clans called sects. The largest sect with a conjectural closure order is isomorphic (as a poset) to the Bruhat order on partial involutions.


Sign in / Sign up

Export Citation Format

Share Document