kidney organogenesis
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
pp. 108759
Author(s):  
Pauli Tikka ◽  
Moritz Mercker ◽  
Ilya Skovorodkin ◽  
Ulla Saarela ◽  
Seppo Vainio ◽  
...  

Author(s):  
Anne R. Ryan ◽  
Alicia R. England ◽  
Christopher P. Chaney ◽  
Mitzy A. Cowdin ◽  
Max Hiltabidle ◽  
...  
Keyword(s):  
Ex Vivo ◽  

2020 ◽  
Author(s):  
Pauli Tikka ◽  
Moritz Mercker ◽  
Ilya Skovorodkin ◽  
Ulla Saarela ◽  
Seppo Vainio ◽  
...  

Abstract During early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, the early structure giving rise to nephron formation. Chemotaxis and cell-cell adhesion differences are believed to drive cell patterning during this critical period of organogenesis, but the spatiotemporal organization of this process is incompletely understood. We applied a Cellular Potts model to explore to how these processes contribute to directed cell movement and aggregation. Model parameters were estimated based on fitting to experimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid culture studies. Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB corner niche requires chemoattractant secretion from both the UB epithelial cells and the NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP cells were observed, both experimentally and by modelling, to move at higher speed in the UB corner as compared to the tip region where they originated. The existence of different cell speed domains along the UB was confirmed using self-organizing map analysis. In summary, we demonstrated the suitability of a Cellular Potts Model approach to simulate cell movement and patterning during early nephrogenesis. Further refinement of the model should allow us to recapitulate the effects of developmental changes of cell phenotypes and molecular crosstalk during organ development.


2020 ◽  
Author(s):  
Pauli Tikka ◽  
Moritz Mercker ◽  
Ilya Skovorodkin ◽  
Ulla Saarela ◽  
Seppo Vainio ◽  
...  

AbstractDuring early kidney organogenesis, nephron progenitor (NP) cells move from the tip to the corner region of the ureteric bud (UB) branches in order to form the pretubular aggregate, the early structure giving rise to nephron formation. Chemotaxis and cell-cell adhesion differences are believed to drive cell patterning during this critical period of organogenesis, but the spatiotemporal organization of this process is incompletely understood.We applied a Cellular Potts model to explore to how these processes contribute to directed cell movement and aggregation. Model parameters were estimated based on fitting to experimental data obtained in ex vivo kidney explant and dissociation-reaggregation organoid culture studies.Our simulations indicated that optimal enrichment and aggregation of NP cells in the UB corner niche requires chemoattractant secretion from both the UB epithelial cells and the NP cells themselves, as well as differences in cell-cell adhesion energies. Furthermore, NP cells were observed, both experimentally and by modelling, to move at higher speed in the UB corner as compared to the tip region where they originated. The existence of different cell speed domains along the UB was confirmed using self-organizing map analysis.In summary, we demonstrated the suitability of a Cellular Potts Model approach to simulate cell movement and patterning during early nephrogenesis. Further refinement of the model should allow us to recapitulate the effects of developmental changes of cell phenotypes and molecular crosstalk during organ development.Author SummaryThe emergence of tissue patterns during vertebrate development is a major interest of both experimental research and biocomputational modelling. In this study, we established a Cellular Potts Model to explore cellular processes during early kidney development. The goal was to elucidate movements and aggregations of nephron progenitor cells. These precursor cells derive from mesenchymal cells around the ureteric buds and eventually form the epithelial structure of the nephron. Moreover, we wanted to explore computationally the mechanisms how these cells segregate from metanephric mesenchyme and move towards the location where the nephron will be formed. Utilizing the Compucell3D simulation software, we developed a model which assumes that nephron progenitor movement and aggregation is governed by only two mechanisms, i.e. cell-cell adhesion differences between cell types and nephron progenitor cell chemotaxis in response to chemoattractant secretion from two sources. These sources were either the epithelial cells of a static ureteric bud and/or the nephron progenitor cells themselves. The simulations indicated faster average cell speeds near the ureteric bud corner, the target region of cell movement and aggregation, and slower speeds near the place of origin, the tip of ureteric bud. The results were validated by comparison of the model predictions with experimental data from two ex vivo embryonic kidney models and a computational optimization protocol.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
David AD Munro ◽  
Yishay Wineberg ◽  
Julia Tarnick ◽  
Chris S Vink ◽  
Zhuan Li ◽  
...  

The origins and functions of kidney macrophages in the adult have been explored, but their roles during development remain largely unknown. Here we characterise macrophage arrival, localisation, heterogeneity, and functions during kidney organogenesis. Using genetic approaches to ablate macrophages, we identify a role for macrophages in nephron progenitor cell clearance as mouse kidney development begins. Throughout renal organogenesis, most kidney macrophages are perivascular and express F4/80 and CD206. These macrophages are enriched for mRNAs linked to developmental processes, such as blood vessel morphogenesis. Using antibody-mediated macrophage-depletion, we show macrophages support vascular anastomoses in cultured kidney explants. We also characterise a subpopulation of galectin-3+ (Gal3+) myeloid cells within the developing kidney. Our findings may stimulate research into macrophage-based therapies for renal developmental abnormalities and have implications for the generation of bioengineered kidney tissues.


Sign in / Sign up

Export Citation Format

Share Document