scholarly journals Vertical vehicle displacement based drive-by inspection of bridge damage with parameter optimization

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Yifu Lan ◽  

Recently, there has been an increasing emphasis on the Indirect bridge health monitoring method employing passing vehicles, which is regarded as one of the most effective approaches in bridge damage screening. However,few researches have been conducted on the drive-by bridge inspection method using vehicle displacement profile as damage indicator. This paper proposes a new drive-by inspection method based on vertical vehicle displacementprofile with parameter optimization. A generalized Vehicle-Bridge Interaction (VBI) system is built in MATLAB, where the bridge is modelled as a simply supported beam with 10 elements, and the passing vehicle is represented as a simplified quarter car. To improve the result sensitivity to bridge damage, the parameter optimization of vehicle configuration is processed employing the Monte Carlo methods. Results show that the proposed method can successfully detect and localize bridge damage by using vertical vehicle displacement profile as damage indicator only, and its performance may depend on the vehicle configuration. The proposed approach provides merits in simplicity and efficiency, which can be applied widely to the bridge damage detection problems.

Abstract. Recently, there has been an increasing emphasis in the Indirect bridge health monitoring method employing passing vehicles, which is regarded as one of the most effective approaches in bridge damage screening. However, few researches have been conducted on the Drive-by bridge inspection method using vehicle displacement profile as damage indicator due to the challenges in displacement measurement and result accuracy. This paper proposes an optimization approach of designing the optimum vehicle parameters to improve the performance of vehicle displacement-based Drive-by bridge damage inspection. A generalized Vehicle-Bridge Interaction (VBI) system is built in MATLAB, where the bridge is modelled as a simply supported beam with 10 elements and the passing vehicle is represented as a simplified quarter car. Employing the Monte Carlo methods, the optimum parameters are determined by numerous simulations processed under diverse damage scenarios. Results show that by employing the optimal vehicle parameters, the bridge damages can be detected effectively and accurately for general damage scenarios based on the vehicle displacement profile. The proposed optimization method can contribute to the wide application of vehicle displacement-based Drive-by bridge damage inspection, providing merits in simplicity and visualization.


10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


Author(s):  
Jun-Ping Pu ◽  
Yao-Min Fang ◽  
Hung-Ren Chen ◽  
Jian-Fa Huang

Unexpected collapses and near collapse of bridges during the 1999 Chi-Chi earthquake underline the need for effective structural monitoring. Periodic structural condition monitoring of bridge structures is necessary to ensure that they provide a continued and safe service. A systematic study of typical bridges is needed, focusing on identifying elastic analytical models that will incorporate the existing state of bridge. To establish dynamic monitoring as a routine bridge inspection method, the soil-structure model of these two bridges are established and compared theoretically and experimentally.


Author(s):  
Junwon Seo ◽  
Luis Duque ◽  
James P. Wacker

The use of Unmanned Aerial Systems (UASs), commonly known as drones, has significantly increased over recent years in the field of civil engineering. In detail, the need for a more efficient alternative for bridge inspection has risen because of the increased interest from bridge owners. The primary goal of this paper is to evaluate the efficiency of a drone as a supplemental bridge inspection tool. To complete this study, a glued laminated (glulam) girder with a composite concrete deck bridge was chosen in South Dakota, and a Dà-Jiāng Innovations (DJI) Phantom 4 drone, was employed to perform the bridge inspection. Based on the literature review, an inspection procedure with a drone was developed to efficiently identify damage on the bridge. A drone-enabled inspection was performed following the procedure, and resulting images were checked with those available in the past inspection report from South Dakota Department of Transportation (DOT). This study includes UAS-based bridge inspection considerations to capture appropriate image data necessary for bridge damage determination. A key finding demonstrated throughout this project is that different types of structural damage on the bridge were identified using the UAS.


Author(s):  
M.J.N. Priestley ◽  
M.J. Kowalsky

A seismic design procedure is developed to enable concrete buildings to be designed to achieve a specified acceptable level of damage under the design earthquake. The acceptable limit is defined as a displacement profile related to limit material strains or code specified drift limits. In this procedure, the elastic properties, including initial stiffness, strength and period, are the end product of the design rather than the starting point. It is shown that the procedure is simple to apply, and results in significant differences from the more conventional force-based procedure. Designs for multi-storey frame and wall buildings are presented, and target displacements are compared with results from inelastic time-history analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
He Chen ◽  
Guo Li ◽  
Rui Fang ◽  
Min Zheng

Real-time monitoring and early warning have great significance in reducing/avoiding the consequences caused by landslides. The deep displacement-based monitoring method has been proven to be a suitable solution for landslide risk management. However, the early warning indicators based on the deep displacement method need to be fully understood. This paper reports on an investigation into early warning indicators and deformation monitoring of several natural landslides. A series of indicators using the profiles of the accumulative displacement, kinetic energy, and their rates against time for early warning are developed and calibrated by monitoring and analyzing a natural landslide. The early warning indicators are then applied to monitor and identify the different deformation stages of the Jinping County North Landslide and the Wendong Town Landslide.


2020 ◽  
Vol 10 (24) ◽  
pp. 8878
Author(s):  
John Thedy ◽  
Kuo-Wei Liao ◽  
Chun-Chieh Tseng ◽  
Chia-Ming Liu

An aged bridge’s performance is affected by degradation and becomes one of the major concerns in maintenance. A preliminary, simple and workable procedure of bridge damage detection is required to minimize maintenance costs. In the past, frequency is one of the most common indicators to detect damage occurrence. Recent research found that using frequency as a health indicator still has room to improve. Alternatively, dynamic displacement is used as an indicator in the current study. These dynamic displacements are reconstructed based on measured acceleration records from micro electro mechanical system (MEMS) sensors. The Newmark-beta method with Windows is proposed to acquire the reconstructed displacements of considered bridges. To demonstrate the accuracy and applicability of the proposed approach, three different experiments are carried out; (i) A small scale bridge with the implementation of MEMS acceleration sensors; (ii) a numerical complex finite element method (FEM) bridge model; (iii) an actual bridge with the implementation of MEMS acceleration sensors and narrow bandwidth Internet of things (NB-IoT) technology. The first experiment shows that the proposed method can successfully identify the difference between damaged/undamaged bridges and determine damage location. The second experiment indicates that the proposed method is able to identify the difference between stiffened/unstiffened bridges. The last experiment shows the applicability of the proposed method on an actual bridge health monitoring project.


Sign in / Sign up

Export Citation Format

Share Document