igneous zircon
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 0)

2022 ◽  
Vol 577 ◽  
pp. 117248
Author(s):  
C.J. Spencer ◽  
A.J. Cavosie ◽  
T.R. Morrell ◽  
G.M. Lu ◽  
J. Liebmann ◽  
...  

2021 ◽  
Author(s):  
J.I. Ejembi ◽  
et al.

<div>Table S1: Peak analyses of age clusters. Figure S1: Chondrite-normalized REE patterns in detrital zircon. Figure S2: LREE-HREE ratio plots. File S1: Detrital zircon U-Pb age data (this study and from Potter-McIntyre et al., 2016). File S2: U-Pb age peaks analysis. File S3: End Member analysis. File S4: Rare earth elemental geochemistry analysis in detrital zircon. File S5: Rare earth elemental geochemistry analysis in igneous zircon.<br></div>


2021 ◽  
Author(s):  
J.I. Ejembi ◽  
et al.

<div>Table S1: Peak analyses of age clusters. Figure S1: Chondrite-normalized REE patterns in detrital zircon. Figure S2: LREE-HREE ratio plots. File S1: Detrital zircon U-Pb age data (this study and from Potter-McIntyre et al., 2016). File S2: U-Pb age peaks analysis. File S3: End Member analysis. File S4: Rare earth elemental geochemistry analysis in detrital zircon. File S5: Rare earth elemental geochemistry analysis in igneous zircon.<br></div>


2021 ◽  
Vol 90 ◽  
pp. 135-158
Author(s):  
Antonio Jabaloy-Sánchez ◽  
Cristina Talavera ◽  
Martín Jesús Rodríguez-Peces ◽  
Mercedes Vázquez-Vílchez ◽  
Noreen Joyce Evans
Keyword(s):  
Se Spain ◽  

2020 ◽  
Author(s):  
Chong Ma ◽  
et al.

Geologic map of the Sawtooth metamorphic complex (Fig. S1), sample outcrop photos (Fig. S2), whole-rock spider diagrams (Fig. S3), plots of igneous zircon trace element versus zircon age (Fig. S4), rare earth element patterns of igneous zircons (Fig. S5), details of analytical methods, sample information (Table S1), whole-rock elemental data (Table S2), zircon U-Pb data (Table S3), titanite U-Pb and trace element data (Table S4), zircon trace element data (Table S5), and zircon Lu-Hf data (Table S6).


2020 ◽  
Author(s):  
Chong Ma ◽  
et al.

Geologic map of the Sawtooth metamorphic complex (Fig. S1), sample outcrop photos (Fig. S2), whole-rock spider diagrams (Fig. S3), plots of igneous zircon trace element versus zircon age (Fig. S4), rare earth element patterns of igneous zircons (Fig. S5), details of analytical methods, sample information (Table S1), whole-rock elemental data (Table S2), zircon U-Pb data (Table S3), titanite U-Pb and trace element data (Table S4), zircon trace element data (Table S5), and zircon Lu-Hf data (Table S6).


Author(s):  
A. Brotodewo ◽  
C. Tiddy ◽  
D. Zivak ◽  
A. Fabris ◽  
D. Giles

2020 ◽  
Author(s):  
Elena Nitkina ◽  
Oleg Belyaev (Ϯ) ◽  
Natalia Kozlova ◽  
Tatiana Kaulina ◽  
Evgeny Sharkov ◽  
...  

&lt;p&gt;The Korvatundra complex is situated between the granite gneisses of the White Sea complex and the rocks of the Tana belt the Kola region (Kozlov et al., 1990; Priyatkina&amp;Sharkov, 1979) and composed of &amp;#160;mica gneisses, schists and quartzite schists. The metamorphism of the complex increases from south to north from the staurolite-muscovite zone to kyanite-garnet-biotite (Map of the mineral facies, 1992; Perchuk&amp;Krotov, 1998).&lt;/p&gt;&lt;p&gt;The U-Pb age of igneous zircon from the metavolcanite is 2101&amp;#177;21 Ma (Kaulina et al., 2003). The early stages of the progressive metamorphism reflected in relict paragenesis in the southern part were under the conditions of the staurolite-chloritoid and staurolite-garnet-two-mica subfacies with 385-570&lt;sup&gt;&amp;#1086;&lt;/sup&gt;&amp;#1057; and 4.6-7.6&amp;#160; kbar (Belyaev&amp;Petrov, 2002).&amp;#160; The prograde metamorphism were under the conditions of the kyanite-garnet-micas and kyanite-garnet-biotite subfacies and are reflected in the composition of newly formed, chemically non-zonal garnets, or in the similar composition newly formed garnet rim. The metamorphism stage parameters determined by the garnet indicate increasing of the temperatures and pressures to 575-615&lt;sup&gt;&amp;#1086;&lt;/sup&gt;&amp;#1057; &amp;#1080; 7.5-9.1 kbar&amp;#160; (Belyaev&amp;Petrov, 2002) or to 650&lt;sup&gt;&amp;#1086;&lt;/sup&gt;&amp;#1057;&amp;#160; &amp;#1080; 7.5 kbar (Perchuk&amp;Krotov, 1998). The time of prograde metamorphism of the Korvatundra is in the interval 1940 and 1917 Ma. Within the Korvatundra the processes of superimposed tectonometamorphism occur under conditions of the kyanite-garnet-biotite subfacies and in the north of the Korvatundra their temperatures and pressures reach of 700-750 &amp;#176; C and 13-14 kbar, correspondingly.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This research was funded by GI KSC RAS program 0226-2019-0052 and Fundamental Program of the Presidium of RAS section &amp;#8220;Fundamental geological and geophysical research of the lithosphere processes&amp;#8221;.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Belyaev O.A, Petrov V.P. // Apatity: GI KSC RAS. 2002. P. 195-208.&lt;/p&gt;&lt;p&gt;Map of the metamorphic rock mineral facies of the Baltic Shield. S.-Pb.: VSEGEI. 1992.&lt;/p&gt;&lt;p&gt;Kaulina T.V., Dlenizin A.A., Belyaev O.A., Kozlova N.E., Apanasevich E.A. // S.-Pb.: IPG RAS. 2003. 189-193 p.&lt;/p&gt;&lt;p&gt;Kozlov N.E., Ivanov A.A., Nerovich L.I. // Apatity: KSC RAS, 1990. 172 p.&lt;/p&gt;&lt;p&gt;Perchuk L.L.., Krotov A.V. // Petrologia. 1998. V.7. &amp;#8470;4. P. 356-381.&lt;/p&gt;&lt;p&gt;Priyatkina L.A., Sharkov E.V. // Leningrad: Nauka. 1979. 127 &amp;#1089;.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document