stream drying
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 130 ◽  
pp. 108045
Author(s):  
Michal Straka ◽  
Marek Polášek ◽  
Zoltán Csabai ◽  
Oliver Zweidick ◽  
Wolfram Graf ◽  
...  

2021 ◽  
Author(s):  
Leonie Kiewiet ◽  
Ernesto Trujillo ◽  
Andrew Hedrick ◽  
Scott Havens ◽  
Katherine Hale ◽  
...  

Abstract. Climate warming affects snowfall fractions and snowpack storage, displaces the rain-snow transition zone towards higher elevations, and impacts discharge timing and magnitude as well as low-flow patterns. However, it remains unknown how variations in the spatial and temporal distribution of precipitation at the rain-snow transition zone affect discharge. To investigate this, we used observations from eleven weather stations and snow depths measured in one aerial lidar survey to force a spatially distributed snowpack model (iSnobal/Automated Water Supply Model) in a semi-arid, 1.8 km2 headwater catchment at the rain-snow transition zone. We focused on surface water inputs (SWI; the summation of rainfall and snowmelt) for four years with contrasting climatological conditions (wet, dry, rainy and snowy) and compared simulated SWI to measured discharge. We obtained a strong spatial agreement between snow depth from the lidar survey and model (r2: 0.88), and a median Nash-Sutcliffe Efficiency (NSE) of 0.65 for simulated and measured snow depths for all modelled years (0.75 for normalized snow depths). The spatial pattern of SWI was consistent between the four years, with north-facing slopes producing 1.09 to 1.25 times more SWI than south-facing slopes, and snow drifts producing up to six times more SWI than the catchment average. We found that discharge in a snowy year was almost twice as high as in a rainy year, despite similar SWI. However, years with a lower snowfall fraction did not always have lower annual discharge nor earlier stream drying. Instead, we found that the dry-out date at the catchment outlet was positively correlated to the snowpack melt-out date. These results highlight the heterogeneity of SWI at the rain-snow transition zone and emphasize the need for spatially distributed modelling or monitoring of both the snowpack and rainfall.


2021 ◽  
Author(s):  
Sara R. Warix ◽  
Sarah E. Godsey ◽  
Kathleen A. Lohse ◽  
Rebecca L. Hale

2021 ◽  
Author(s):  
Adam Price ◽  
C.Nathan Jones ◽  
John Hammond ◽  
Margaret Zimmer ◽  
Samuel Zipper

<p>The paradigm of surface water flow regimes is central to the aquatic sciences, where the timing, duration, frequency, magnitude, and rate of change of flow drive physical, chemical, and biological functions in aquatic systems. However, non-perennial streams comprise the majority of the global river network and there is a need to understand not just whether or not a stream periodically dries, but how it dries. Here, we propose to flip the script on flow regimes by presenting a comprehensive 'drying regime' framework to characterize stream drying.  We then identify similar drying characteristics in streams across watersheds with a broad range of climates, physiographic regions, and land uses. Using daily streamflow from 894 U.S. Geological Survey streamflow gages we isolated over 25,000 unique drying events over a period from 1979 - 2018. From these drying events we identified and calculated streamflow metrics that describe timing, duration, magnitude, frequency, and rate of change of stream drying. Using multivariate statistics, k-means clustering, and random forest analyses we grouped drying events into distinct drying regimes and determined the drivers of the clustered regimes. K-means clustering resulted in 4 distinct drying regimes characterized by (1) more frequent drying, (2) longer no-flow duration, (3) drying occurring following low antecedent flows, and (4) flashy high frequency drying, respectively. The majority of gages had more than one drying regime present at different times within each year, suggesting that dominant flow paths or drivers varied through time  Clustered drying regimes show low event-scale spatial coherence, and while drying regimes (1) and (2) show similar frequency throughout the year, (3) and (4) are substantially more frequent during summer months. Based on random forest analysis, land cover characteristics appear to drive drying event assignment to drying regimes more than climate variables. Furthermore, increased importance of individual watershed properties shows that the structural makeup of the watershed is notably more important to how an intermittent system dries than climate or physiographic characteristics. Non-perennial systems have unique functions due to the occurrence of both flowing and dry states, yet most of the past efforts rely on frameworks built around perennial streamflow behavior. Our work presents a novel drying regime framework to allow future studies to more effectively connect river drying to the physical, chemical, and biological functioning in these systems. This framework may also aid in current sustainable river management, including engineered flow regimes that are designed to balance water allocations with ecosystem requirements.</p>


2020 ◽  
Vol 2 ◽  
Author(s):  
Ruth B. MacNeille ◽  
Kathleen A. Lohse ◽  
Sarah E. Godsey ◽  
Julia N. Perdrial ◽  
Colden V. Baxter

Stream drying and wildfire are projected to increase with climate change in the western United States, and both are likely to impact stream chemistry patterns and processes. To investigate drying and wildfire effects on stream chemistry (carbon, nutrients, anions, cations, and isotopes), we examined seasonal drying in two intermittent streams in southwestern Idaho, one stream that was unburned and one that burned 8 months prior to our study period. During the seasonal recession following snowmelt, we hypothesized that spatiotemporal patterns of stream chemistry would change due to increased evaporation, groundwater dominance, and autochthonous carbon production. With increased nutrients and reduced canopy cover, we expected greater shifts in the burned stream. To capture spatial chemistry patterns, we sampled surface water for a suite of analytes along the length of each stream with a high spatial scope (50-m sampling along ~2,500 m). To capture temporal variation, we sampled each stream in April (higher flow), May, and June (lower flow) in 2016. Seasonal patterns and processes influencing stream chemistry were generally similar in both streams, but some were amplified in the burned stream. Mean dissolved inorganic carbon (DIC) concentrations increased with drying by 22% in the unburned and by 300% in the burned stream. In contrast, mean total nitrogen (TN) concentrations decreased in both streams, with a 16% TN decrease in the unburned stream and a 500% TN decrease (mostly nitrate) in the burned stream. Contrary to expectations, dissolved organic carbon (DOC) concentrations varied more in space than in time. In addition, we found the streams did not become more evaporative relative to the Local Meteoric Water Line (LMWL) and we found weak evidence for evapoconcentration with drying. However, consistent with our expectations, strontium-DIC ratios indicated stream water shifted toward groundwater-dominance, especially in the burned stream. Fluorescence and absorbance measurements showed considerable spatial variation in DOC sourcing each month in both streams, and mean values suggested a temporal shift from allochthonous toward autochthonous carbon sources in the burned stream. Our findings suggest that the effects of fire may magnify some chemistry patterns but not the biophysical controls that we tested with stream drying.


2020 ◽  
Vol 66 (1) ◽  
pp. 102-113
Author(s):  
Christopher G. Meijer ◽  
Helen J. Warburton ◽  
Angus R. McIntosh

2020 ◽  
pp. 1-17
Author(s):  
Ratiya Thuwapanichayanan ◽  
Ponlakrit Kumklam ◽  
Somchart Soponronnarit ◽  
Somkiat Prachayawarakorn

Author(s):  
Ruth MacNeille ◽  
Kathleen Lohse ◽  
Julia Prediral ◽  
Sarah Godsey ◽  
Colden Baxter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document