discrete tomography
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 298 ◽  
pp. 7-20
Author(s):  
Matthew Ceko ◽  
Silvia M.C. Pagani ◽  
Rob Tijdeman

Author(s):  
D. Kamilis ◽  
S. Lee ◽  
J. Desjardins ◽  
N. Polydorides

We present progress in fast, high-resolution imaging, material classification, and fault detection using hyperspectral X-ray measurements. Classical X-ray CT approaches rely on data from many projection angles, resulting in long acquisition and reconstruction times. Additionally, conventional CT cannot distinguish between materials with similar densities. However, in additive manufacturing, the majority of materials used are known a priori. This knowledge allows to vastly reduce the data collected and increase the accuracy of fault detection. In this context, we propose an imaging method for non-destructive testing of materials based on the combination of spectral X-ray CT and discrete tomography. We explore the use of spectral X-ray attenuation models and measurements to recover the characteristic functions of materials in heterogeneous media with piece-wise uniform composition. We show by means of numerical simulation that using spectral measurements from a small number of angles, our approach can alleviate the typical deterioration of spatial resolution and the appearance of streaking artifacts.


Author(s):  
Matthew Ceko ◽  
Timothy Petersen ◽  
Imants Svalbe ◽  
Rob Tijdeman
Keyword(s):  

2020 ◽  
Vol 29 (2) ◽  
Author(s):  
Nick Fischer ◽  
Christian Ikenmeyer

AbstractIn two papers, Bürgisser and Ikenmeyer (STOC 2011, STOC 2013) used an adaption of the geometric complexity theory (GCT) approach by Mulmuley and Sohoni (Siam J Comput 2001, 2008) to prove lower bounds on the border rank of the matrix multiplication tensor. A key ingredient was information about certain Kronecker coefficients. While tensors are an interesting test bed for GCT ideas, the far-away goal is the separation of algebraic complexity classes. The role of the Kronecker coefficients in that setting is taken by the so-called plethysm coefficients: These are the multiplicities in the coordinate rings of spaces of polynomials. Even though several hardness results for Kronecker coefficients are known, there are almost no results about the complexity of computing the plethysm coefficients or even deciding their positivity.In this paper, we show that deciding positivity of plethysm coefficients is -hard and that computing plethysm coefficients is #-hard. In fact, both problems remain hard even if the inner parameter of the plethysm coefficient is fixed. In this way, we obtain an inner versus outer contrast: If the outer parameter of the plethysm coefficient is fixed, then the plethysm coefficient can be computed in polynomial time. Moreover, we derive new lower and upper bounds and in special cases even combinatorial descriptions for plethysm coefficients, which we consider to be of independent interest. Our technique uses discrete tomography in a more refined way than the recent work on Kronecker coefficients by Ikenmeyer, Mulmuley, and Walter (Comput Compl 2017). This makes our work the first to apply techniques from discrete tomography to the study of plethysm coefficients. Quite surprisingly, that interpretation also leads to new equalities between certain plethysm coefficients and Kronecker coefficients.


Author(s):  
Zhendong Lei ◽  
Shaowei Cai ◽  
Chuan Luo

Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) are two basic and important constraint problems with many important applications. SAT and MaxSAT are expressed in CNF, which is difficult to deal with cardinality constraints. In this paper, we introduce Extended Conjunctive Normal Form (ECNF), which expresses cardinality constraints straightforward and does not need auxiliary variables or clauses. Then, we develop a simple and efficient local search solver LS-ECNF with a well designed scoring function under ECNF. We also develop a generalized Unit Propagation (UP) based algorithm to generate the initial solution for local search. We encode instances from Nurse Rostering and Discrete Tomography Problems into CNF with three different cardinality constraint encodings and ECNF respectively. Experimental results show that LS-ECNF has much better performance than state of the art MaxSAT, SAT, Pseudo-Boolean and ILP solvers, which indicates solving cardinality constraints with ECNF is promising.


Sign in / Sign up

Export Citation Format

Share Document