scholarly journals Plane partitions and the combinatorics of some families of reduced Kronecker coefficients.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Laura Colmenarejo

International audience We compute the generating function of some families of reduced Kronecker coefficients. We give a combi- natorial interpretation for these coefficients in terms of plane partitions. This unexpected relation allows us to check that the saturation hypothesis holds for the reduced Kronecker coefficients of our families. We also compute the quasipolynomial that govern these families, specifying the degree and period. Moving to the setting of Kronecker co- efficients, these results imply some observations related to the rate of growth experienced by the families of Kronecker coefficients associated to the reduced Kronecker coefficients already studied.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jessica Striker

International audience Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self―complementary plane partitions (TSSCPPs), Catalan objects, tournaments, semistandard Young tableaux, and totally symmetric plane partitions. We use this perspective to prove an expansion of the tournament generating function as a sum over TSSCPPs which is analogous to a known formula involving ASMs. Les matrices à signe alternant (ASMs) sont des matrices carrées dont les coefficients sont 0,1 ou -1, telles que dans chaque ligne et chaque colonne la somme des entrées vaut 1 et les entrées non nulles ont des signes qui alternent. Nous incluons les ASMs dans un cadre plus vaste, en étudiant les idéaux des sous-posets d'un certain poset, dont nous prouvons qu'ils sont en bijection avec de nombreux objets combinatoires intéressants, tels que les ASMs, les partitions planes totalement symétriques autocomplémentaires (TSSCPPs), des objets comptés par les nombres de Catalan, les tournois, les tableaux semistandards, ou les partitions planes totalement symétriques. Nous utilisons ce point de vue pour démontrer un développement de la série génératrice des tournois en une somme portant sur les TSSCPPs, analogue à une formule déjà connue faisant appara\^ıtre les ASMs.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Greta Panova

International audience We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted staircase without the box in its upper right corner, i.e. truncated by a box, a rectangle truncated by a staircase and a rectangle truncated by a square minus a box. The proofs involve finding the generating function of the corresponding plane partitions using interpretations and formulas for sums of restricted Schur functions and their specializations. The number of standard tableaux is then found as a certain limit of this function. Nous considérons un nouveau type de partitions planes, ou de tableaux de Young, droits ou décalés, obtenus en privant leurs diagrammes de certaines cellules en haut à droite, et dans certains cas nous trouvons des formules d'énumération pour les tableaux standard. Les preuves impliquent le calcul de la fonction génératrice pour les partitions planes correspondantes, en utilisant des interprétations et des formules pour les sommes de fonctions de Schur restreintes et leurs spécialisations. Le nombre de tableaux standard est alors obtenu comme une certaine limite de cette fonction.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Shuhei Kamioka

International audience A new triple product formulae for plane partitions with bounded size of parts is derived from a combinato- rial interpretation of biorthogonal polynomials in terms of lattice paths. Biorthogonal polynomials which generalize the little q-Laguerre polynomials are introduced to derive a new triple product formula which recovers the classical generating function in a triple product by MacMahon and generalizes the trace-type generating functions in double products by Stanley and Gansner.


1998 ◽  
Vol Vol. 3 no. 1 ◽  
Author(s):  
Christian Krattenthaler

International audience A bijective proof for Stanley's hook-content formula for the generating function for column-strict reverse plane partitions of a given shape is given that does not involve the involution principle of Garsia and Milne. It is based on the Hillman-Grassl algorithm and Schützenberger's \emphjeu de taquin.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2014 ◽  
Vol 91 (1) ◽  
pp. 41-46 ◽  
Author(s):  
ERNEST X. W. XIA

AbstractFor any positive integer $n$, let $f(n)$ denote the number of 1-shell totally symmetric plane partitions of $n$. Recently, Hirschhorn and Sellers [‘Arithmetic properties of 1-shell totally symmetric plane partitions’, Bull. Aust. Math. Soc.89 (2014), 473–478] and Yao [‘New infinite families of congruences modulo 4 and 8 for 1-shell totally symmetric plane partitions’, Bull. Aust. Math. Soc.90 (2014), 37–46] proved a number of congruences satisfied by $f(n)$. In particular, Hirschhorn and Sellers proved that $f(10n+5)\equiv 0\ (\text{mod}\ 5)$. In this paper, we establish the generating function of $f(30n+25)$ and prove that $f(250n+125)\equiv 0\ (\text{mod\ 25}).$


2015 ◽  
Vol 30 (33) ◽  
pp. 1550202 ◽  
Author(s):  
Amer Iqbal ◽  
Babar A. Qureshi ◽  
Khurram Shabbir ◽  
Muhammad A. Shehper

We study (p, q) 5-brane webs dual to certain N M5-brane configurations and show that the partition function of these brane webs gives rise to cylindric Schur process with period N. This generalizes the previously studied case of period 1. We also show that open string amplitudes corresponding to these brane webs are captured by the generating function of cylindric plane partitions with profile determined by the boundary conditions imposed on the open string amplitudes.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


Sign in / Sign up

Export Citation Format

Share Document