intrinsic connectivity networks
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lei Yang ◽  
Qingmeng Liu ◽  
Yu Zhou ◽  
Xing Wang ◽  
Tongning Wu ◽  
...  

Neurophysiological effect of human exposure to radiofrequency signals has attracted considerable attention, which was claimed to have an association with a series of clinical symptoms. A few investigations have been conducted on alteration of brain functions, yet no known research focused on intrinsic connectivity networks, an attribute that may relate to some behavioral functions. To investigate the exposure effect on functional connectivity between intrinsic connectivity networks, we conducted experiments with seventeen participants experiencing localized head exposure to real and sham time-division long-term evolution signal for 30 min. The resting-state functional magnetic resonance imaging data were collected before and after exposure, respectively. Group-level independent component analysis was used to decompose networks of interest. Three states were clustered, which can reflect different cognitive conditions. Dynamic connectivity as well as conventional connectivity between networks per state were computed and followed by paired sample t-tests. Results showed that there was no statistical difference in static or dynamic functional network connectivity in both real and sham exposure conditions, and pointed out that the impact of short-term electromagnetic exposure was undetected at the ICNs level. The specific brain parcellations and metrics used in the study may lead to different results on brain modulation.


Author(s):  
Silvia Angela Mansi ◽  
Medaglia Maria Teresa ◽  
Stefano Seri ◽  
Paolo Tonin ◽  
Pia Rotshtein ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Mirandola ◽  
Daniela Ballotta ◽  
Francesca Talami ◽  
Giada Giovannini ◽  
Giacomo Pavesi ◽  
...  

Objective: To evaluate local and distant blood oxygen level dependent (BOLD) signal changes related to interictal epileptiform discharges (IED) in drug-resistant temporal lobe epilepsy (TLE).Methods: Thirty-three TLE patients undergoing EEG–functional Magnetic Resonance Imaging (fMRI) as part of the presurgical workup were consecutively enrolled. First, a single-subject spike-related analysis was performed: (a) to verify the BOLD concordance with the presumed Epileptogenic Zone (EZ); and (b) to investigate the Intrinsic Connectivity Networks (ICN) involvement. Then, a group analysis was performed to search for common BOLD changes in TLE.Results: Interictal epileptiform discharges were recorded in 25 patients and in 19 (58%), a BOLD response was obtained at the single-subject level. In 42% of the cases, BOLD changes were observed in the temporal lobe, although only one patient had a pure concordant finding, with a single fMRI cluster overlapping (and limited to) the EZ identified by anatomo-electro-clinical correlations. In the remaining 58% of the cases, BOLD responses were localized outside the temporal lobe and the presumed EZ. In every patient, with a spike-related fMRI map, at least one ICN appeared to be involved. Four main ICNs were preferentially involved, namely, motor, visual, auditory/motor speech, and the default mode network. At the single-subject level, EEG–fMRI proved to have high specificity (above 65%) in detecting engagement of an ICN and the corresponding ictal/postictal symptom, and good positive predictive value (above 67%) in all networks except the visual one. Finally, in the group analysis of BOLD changes related to IED revealed common activations at the right precentral gyrus, supplementary motor area, and middle cingulate gyrus.Significance: Interictal temporal spikes affect several distant extra-temporal areas, and specifically the motor/premotor cortex. EEG–fMRI in patients with TLE eligible for surgery is recommended not for strictly localizing purposes rather it might be useful to investigate ICNs alterations at the single-subject level.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David Hassanein Berro ◽  
Jean-Michel Lemée ◽  
Louis-Marie Leiber ◽  
Evelyne Emery ◽  
Philippe Menei ◽  
...  

Abstract Background Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the “Covert” and “Overt” contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language.


2021 ◽  
Author(s):  
J. S. Jones ◽  
D. E. Astle ◽  

AbstractBehavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome.


2021 ◽  
Author(s):  
Gregory Scott ◽  
Robert Leech

A widespread assumption of fMRI-derived large-scale intrinsic connectivity networks (ICNs) is that they are spatially static over time. However, the assumption of spatial stationarity of ICNs has been challenged by a range of techniques that allow for time-varying connectivity between brain regions and demonstration that canonical networks like the default model network (DMN) can be fractionated according to time-varying connectivity relationships of their subcomponents. Previously, we developed a simple spatiotemporal ICA (stICA) technique to allow the discovery of patterns of spatiotemporal evolution in task fMRI data in a way that avoided the traditional constraint of spatial stationarity on brain networks, and we validated the approach in fMRI of task-to-rest transitions. Here, we apply our stICA technique to resting-state fMRI datasets to explore whether spatiotemporally evolving components of brain activity can be identified in the absence of an overt behavioural task. We found that stICA components could generally be described in terms of graded onsets and offsets of ICNs that had been calculated based on techniques that assumed spatial stationarity. Our results suggest that, to a reasonable approximation, stable ICNs can be taken to be building blocks of the spatiotemporal patterns measured with resting-state fMRI.


2021 ◽  
Author(s):  
Saurabh Bhaskar Shaw ◽  
Margaret C. McKinnon ◽  
Jennifer J Heisz ◽  
Amabilis H. Harrison ◽  
John F. Connolly ◽  
...  

Functional magnetic resonance imaging (fMRI) has identified dysfunctional network dynamics underlying a number of psychopathologies, including post-traumatic stress disorder, depression and schizophrenia. There is tremendous potential for the development of network-based clinical biomarkers to better characterize these disorders. However, to realize this potential requires the ability to track brain networks using a more affordable imaging modality, such as Electroencephalography (EEG). Here we present a novel analysis pipeline capable of tracking brain networks from EEG alone, after training on supervisory signals derived from data simultaneously recorded in EEG and fMRI, while people engaged in various cognitive tasks. EEG-based features were then used to classify three cognitively-relevant brain networks with up to 75\% accuracy. These findings could lead to affordable and non-invasive methods to objectively diagnose brain disorders involving dysfunctional network dynamics, and to track and even predict treatment responses.


Sign in / Sign up

Export Citation Format

Share Document