recipient liver
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingcai Pan ◽  
Jiawang Tao ◽  
Yan Chen ◽  
Jiaye Zhang ◽  
Anteneh Getachew ◽  
...  

Abstract Background Chemically strategies to generate hepatic cells from human pluripotent stem cells (hPSCs) for the potential clinical application have been improved. However, producing high quality and large quantities of hepatic cells remain challenging, especially in terms of step-wise efficacy and cost-effective production requires more improvements. Methods Here, we systematically evaluated chemical compounds for hepatoblast (HB) expansion and maturation to establish a robust, cost-effective, and reproducible methodology for self-renewal HBs and functional hepatocyte-like cell (HLC) production. Results The established chemical cocktail could enable HBs to proliferate nearly 3000 folds within 3 weeks with preserved bipotency. Moreover, those expanded HBs could be further efficiently differentiated into homogenous HLCs which displayed typical morphologic features and functionality as mature hepatocytes including hepatocyte identity marker expression and key functional activities such as cytochrome P450 metabolism activities and urea secretion. Importantly, the transplanted HBs in the injured liver of immune-defect mice differentiated as hepatocytes, engraft, and repopulate in the injured loci of the recipient liver. Conclusion Together, this chemical compound-based HLC generation method presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratih Yuniartha ◽  
Takayoshi Yamaza ◽  
Soichiro Sonoda ◽  
Koichiro Yoshimaru ◽  
Toshiharu Matsuura ◽  
...  

Abstract Background Stem cells from human exfoliated deciduous teeth (SHED) have been reported to show the in vivo and in vitro hepatic differentiation, SHED-Heps; however, the cholangiogenic potency of SHED-Heps remains unclear. Here, we hypothesized that SHED-Heps contribute to the regeneration of intrahepatic bile duct system in chronic fibrotic liver. Methods SHED were induced into SHED-Heps under cytokine stimulation. SHED-Heps were intrasplenically transplanted into chronically CCl4-treated liver fibrosis model mice, followed by the analysis of donor integration and hepatobiliary metabolism in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile duct system in the recipient liver. Furthermore, SHED-Heps were induced under the stimulation of tumor necrosis factor alpha (TNFA). Results The intrasplenic transplantation of SHED-Heps into CCl4-treated mice showed that donor SHED-Heps behaved as human hepatocyte paraffin 1- and human albumin-expressing hepatocyte-like cells in situ and ameliorated CCl4-induced liver fibrosis. Of interest, the integrated SHED-Heps not only expressed biliary canaliculi ATP-binding cassette transporters including ABCB1, ABCB11, and ABCC2, but also recruited human keratin 19- (KRT19-) and KRT17-positive cells, which are considered donor-derived cholangiocytes, regenerating the intrahepatic bile duct system in the recipient liver. Furthermore, the stimulation of TNFA induced SHED-Heps into KRT7- and SRY-box 9-positive cells. Conclusions Collectively, our findings demonstrate that infused SHED-Heps showed cholangiogenic ability under the stimulation of TNFA in CCl4-damaged livers, resulting in the regeneration of biliary canaliculi and interlobular bile ducts in chronic fibrotic liver. Thus, the present findings suggest that SHED-Heps may be a novel source for the treatment of cholangiopathy.


2021 ◽  
Author(s):  
Tingcai Pan ◽  
Jiawang Tao ◽  
Yan Chen ◽  
Jiaye Zhang ◽  
Anteneh Getachew ◽  
...  

Abstract Background: Chemically strategies to generate hepatic cells from human pluripotent stem cells (hPSCs) for the potential clinical application have been improved. However, producing high quality and large quantities of hepatic cells remain challenging, especially in terms of step-wise efficacy and cost-effective production requires more improvements. Methods: Here, we systematically evaluated chemical compounds for hepatoblasts (HBs) expansion and maturation to establish a robust, cost-effective and reproducible methodology for self-renewal HBs and functional hepatocyte-like cells (HLCs) production. Results: The established chemical cocktail could enable HBs to proliferate nearly 3000 folds within 3 weeks with preserved bipotency. Moreover, those expanded HBs could be further efficiently differentiated into homogenous HLCs displayed typical morphologic and functionality as mature hepatocytes, including hepatocyte identity markers expression and key functional activities such as cytochrome P450 metabolism activities and urea secretion. Importantly, the transplanted HBs in injured liver of immune-defect mice differentiated as hepatocytes, engraft and repopulate in the injured loci of the recipient liver. Conclusion: Together, this chemical compound based HLCs generation method presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery application.


HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S342
Author(s):  
Woo-Hyoung Kang ◽  
Shin Hwang ◽  
Gi-Won Song ◽  
Ki-Hun Kim ◽  
Chul-Soo Ahn ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yongting Zhang ◽  
Yuwen Li ◽  
Wenting Li ◽  
Jie Cai ◽  
Ming Yue ◽  
...  

Recent studies have described beneficial effects of an infusion of mesenchymal stem cells (MSCs) derived from Wharton’s jelly tissue, for the treatment of acute liver failure (ALF). However, data on the therapeutic potential of culture-expanded MSCs are lacking. We examined the therapeutic potential of passage five (P5) and ten (P10) human umbilical cord- (hUC-) MSCs via their transplantation into Sprague-Dawley (SD) rats with D-galactosamine (D-GalN) and LPS-induced acute liver failure (ALF). SD rats were randomly divided into three groups: control group, P5 hUC-MSCs group, and P10 hUC-MSCs group. After transplantation, P5 hUC-MSCs provided a significant survival benefit. The analysis of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) levels showed that transplantation with P5 hUC-MSCs was more effective than treatment with P10 hUC-MSCs. P5 hUC-MSCs also successfully downregulated the hepatic activity index (HAI) scores. Compared to P10 hUC-MSCs in vivo, P5 hUC-MSCs significantly enhanced the regeneration and inhibited the apoptosis of hepatocytes. CM-Dil-labeled hUC-MSCs were found to engraft within the recipient liver, whereas the homing of cells to the recipient liver in the P10 hUC-MSCs group was less effective compared to the P5 hUC-MSCs group. Previous studies have shown that the concentration of hepatocyte growth factor (HGF) in the injured liver was significantly increased. HGF is commonly known as the ligand of c-Met. The level of c-Met in hUC-MSCs as detected by Western blotting indicated that at a higher passage number, there is a decrease in c-Met. These data suggest that direct transplantation of P5 hUC-MSCs can more efficiently home to an injured liver. Subsequently, the P5 hUC-MSCs can rescue ALF and repopulate the livers of rats through the stimulation of endogenous liver regeneration and inhibition of hepatocellular apoptosis for compensated liver function, which is dependent on the higher level of c-Met than P10 hUC-MSCs.


2018 ◽  
Vol 55 ◽  
pp. 57-65 ◽  
Author(s):  
Friedrich Foerster ◽  
Jens Mittler ◽  
Felix Darstein ◽  
Michael Heise ◽  
Jens U. Marquardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document