rc frame structure
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 24)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
pp. 1-11
Author(s):  
Jinchao Liu

BACKGROUND: The analysis of seismic stability of structure is important in the field of engineering. OBJECTIVE: This study aims to verify the reliability of numerical simulation in seismic stability of reinforced concrete (RC) frame structure. METHODS: Based on the numerical simulation, the material constitutive model of RC frame structure was introduced and then a finite element model was established through ABAQUS to analyze its seismic stability. RESULTS: The simulation results of ABAQUS were similar to the test values, the tangent slope of the skeleton curve of the structure decreased gradually, the interstorey displacement of storey 1 was the largest, the maximum error of the interstorey displacement angle was 0.005, and the ductility coefficient was 4. CONCLUSIONS: The experimental results verify the reliability of the numerical simulation method and provide some theoretical support for its better application in the study of seismic stability.


2021 ◽  
Vol 60 (1) ◽  
pp. 567-577
Author(s):  
Yizhe Liu ◽  
Bofang Zhang ◽  
Ting Wang ◽  
Tian Su ◽  
Hanyang Chen

Abstract The analysis method of the simplified structure formation model provides the basis for the analysis of the reinforced concrete (RC) structure under earthquake and dynamic load, which has important significance for seismic analysis of RC structure. In this paper, the three-layer RC frame structure is simulated and analyzed by MATLAB based on the NewMark-β method, considering the influence of time-varying simple harmonic loads and seismic waves on acceleration, displacement, and velocity of RC structure. The vibration response of the RC structure is analyzed by introducing the stiffness reduction coefficient. The results show that NewMark-β method provides a new idea for the seismic response of RC frame structures, making the seismic analysis of frame structures more practical; the variation range of its elastic modulus is obtained through the analysis of the constitutive model of RC, which provides the basis for the value of the stiffness coefficient; the application of the top load and the bottom load has different structural responses to the RC frame structure, and the impact of the load on the structure is more adverse when the load acts on the bottom; with the change of time, the binding stiffness coefficient will also change, and the stability of the structure will decrease greatly; the function relationship between the acceleration of the third floor and the reduction coefficient of rigidity is obtained by taking different values of the reduction coefficient of rigidity.


Sign in / Sign up

Export Citation Format

Share Document