REVIEWS ON ADVANCED MATERIALS SCIENCE
Latest Publications


TOTAL DOCUMENTS

208
(FIVE YEARS 138)

H-INDEX

10
(FIVE YEARS 5)

Published By Walter De Gruyter Gmbh

1605-8127

2021 ◽  
Vol 60 (1) ◽  
pp. 839-845
Author(s):  
Samia Belhousse ◽  
Fatma-Zohra Tıghılt ◽  
Sarah Bennıa ◽  
Sarah Adjtoutah ◽  
Sabrina Sam ◽  
...  

Abstract In recent years, hybrid structures have attracted wide consideration because they generate new very interesting properties. In this study, a hybrid gas sensor was developed using a simple fabrication process from the combination of porous silicon (PSi) and polythiophene (PTh). The study of the effect of electropolymerization rate and film thickness of PTh on the sensitivity and the stability of sensor was realized at room temperature. PSi was formed by electrochemical anodization, and it is an interesting material for sensing applications due to its high surface area. However, to avoid its degradation and to preserve its properties over the time, PSi surface was functionalized electrochemically with PTh subsequently to thermal oxidation. PTh as a conductive polymer is known for its high sensitivity and stability to environmental change. Several thicknesses of PTh have been electropolymerized onto the oxidized PSi surface to determine the best conditions for developing a sensitive and stable sensor. PTh thickness was controlled by the number of applied voltammogram cyclic. The characterizations of the different elaborated surfaces were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, cyclic voltammetry, contact angle, and secondary ion mass spectrometry. Finally, we studied the sensitivity, the response time, and the stability of PSi/PTh structures with different PTh thicknesses in the presence of CO2 gas and under cigarette smoke, by performing electrical characterizations, at room temperature.


2021 ◽  
Vol 60 (1) ◽  
pp. 691-701
Author(s):  
Zhibo Yang ◽  
Wang Sun ◽  
Dongyu He ◽  
Daocheng Han ◽  
Wei Wang ◽  
...  

Abstract In this article, the laser-assisted ultrasonic vibration dressing technique was applied to the cubic boron nitride (CBN) grinding wheel to study the effect of various process parameters (namely, laser power, dressing depth, feed rate, and grinding wheel speed) on the grinding force, surface quality, and morphological evolution of CBN abrasive particles. The results showed that abrasive particles’ morphology mainly undergoes micro-crushing, local crushing, large-area crushing, macro-crushing, and other morphological changes. The dressing force can be effectively reduced by controlling the dressing process parameters. Besides, grinding tests are performed on the grinding wheel after dressing to reveal specimens’ surface quality. Excellent grinding characteristics and grinding quality of the grinding wheel were obtained by the proposed technique with the optimized process parameters.


2021 ◽  
Vol 60 (1) ◽  
pp. 818-838
Author(s):  
Haiou Shi ◽  
Jinxia Zhao ◽  
Fangmu Chen ◽  
Junjin Lin ◽  
Jianhe Xie

Abstract Precast-reinforced concrete (RC) structures in urban rail transit projects can provide many advantages over their cast-in-place counterparts. However, lessons learned from past earthquakes show that beam-column joints may be a critical point of these structures and can overestimate the mechanical performance under vertical seismic loadings if not properly understood. This paper presents unbonded and bonded prestressed precast RC beam-column joints for elevated station platforms. Prestressed steel strands are used to provide joints with self-centring capacity. The performance of the proposed joints under vertical cyclic loadings is experimentally investigated and compared to that of monolithic joints in this study. The obtained results demonstrate the good properties of the proposed precast joints in terms of bearing capacity, energy dissipation capacity and ductility control. A comparison with a conventional monolithic beam-column joint indicates the better performance against earthquakes of the proposed precast prestressed joints, and the precast joint with symmetric prestressed steel strands in the top and bottom of the beam exhibits better flexural stiffness and energy dissipation capacity.


2021 ◽  
Vol 60 (1) ◽  
pp. 846-852
Author(s):  
Yang Yan-Shuang ◽  
Li Kai-Yue ◽  
Zhou Hui ◽  
Tian Hao-Yuan ◽  
Cheng Wei ◽  
...  

Abstract Computed tomography (CT) scanning technology is helpful in investigating rock materials as it can demonstrate the micro structure of rock clearly. Conventional triaxial compression tests and the corresponding graded triaxial loading tests were carried out to investigate the complex failure mechanism of the marble at the Jinping Hydropower Station. After that CT-scanning tests were done on the loaded marble specimens. The test results show that (1) the CT numbers of the specimens have a certain statistical regularity, that is, the CT numbers of the specimens under different confining pressures satisfy the Weibull distribution, as the confining pressure increases, the mean values rise while variances decrease; (2) in the two groups of tests, the average CT numbers corresponding to the conventional triaxial tests are higher than those corresponding to the graded loading tests, but the CT number variances are lower than those of the graded loading tests; and (3) according to meso-damage mechanics, the damage variables of the rock specimens were established based on the definition of CT numbers. The calculation results show that the damage variables decrease with the increase in confining pressure, the damage variables of the rock specimens in the graded loading tests are higher than those in the conventional triaxial test, and the differences between the two loading tests have grown with the increase in confining pressure.


2021 ◽  
Vol 60 (1) ◽  
pp. 663-677
Author(s):  
Song Gao ◽  
Qiuyi Li ◽  
Jianlin Luo

Abstract Fractal dimension is introduced to describe the complicated characteristics of recycled aggregate and their influence on properties of recycled concrete as an integrated indicator. The fractal dimensions of both particle outline and distribution of recycled aggregate have obvious self-similarity and fractal characteristics. The order of the bulk density, water absorption, and crushing index of recycled aggregate in particle group state is clearly and directly related to the fractal dimension of boundary line. Additionally, the fractal dimension of the distribution of recycled coarse aggregate in concrete decreases in order of natural aggregate, Type I, Type II, and Type III recycled coarse aggregate; smaller distribution dimension value represents more concentrated distribution of aggregate, and 7 and 28 days compressive strength of the corresponding recycled concrete increases. The fractal dimension method is an effective process to assess comprehensive performances of recycled aggregate and helpful to establish a quantitative evaluation criterion for its wide applications.


2021 ◽  
Vol 60 (1) ◽  
pp. 884-893
Author(s):  
Ádám Révész ◽  
Dániel G. Fodor ◽  
György Krállics ◽  
Tony Spassov ◽  
Marcell Gajdics

Abstract Ball-milled nanocrystalline Mg powders catalyzed by TiO2 powder, titanate nanotubes and carbon nanotubes were subjected to intense plastic deformation by equal-channel angular pressing. Microstructural characteristics of these nanocomposites have been investigated by X-ray diffraction. Microstructural parameters, such as the average crystallite size, the average dislocation density and the average dislocation distance have been determined by the modified Williamson–Hall analysis. Complementary hydrogen desorption and absorption experiments were carried out in a Sieverts’ type apparatus. It was found that the Mg-based composite catalyzed by titanate nanotubes exhibits the best overall H-storage performance, reaching 7.1 wt% capacity. The hydrogenation kinetic curves can be fitted by the contracting volume function for all the investigated materials. From the fitted parameters, it is confirmed that the titanate nanotube additive results in far the best kinetic behavior, including the highest hydride front velocity.


2021 ◽  
Vol 60 (1) ◽  
pp. 894-911
Author(s):  
Yun Zhai ◽  
Sibo He ◽  
Lei Lei ◽  
Tianmin Guan

Abstract The stress shielding effect is a critical issue for implanted prosthesis due to the difference in elastic modulus between the implanted material and the human bone. The adjustment of the elastic modulus of implants by modification of the lattice structure is the key to the research in the field of implanted prosthesis. Our work focuses on the basic unit structure of octahedron Ti6Al4V. The equivalent elastic modulus and equivalent density of porous structure are optimized according to the mechanical properties of human bone tissue by adjusting the edge diameter and side length of octahedral lattice. Macroscopic long-range ordered arrangement of lattice structures is fabricated by selective laser melting (SLM) technology. Finite element simulation is performed to calculate the mechanical property of octahedron Ti6Al4V. Scanning electronic microscopy is applied to observe the microstructure of octahedron alloy and its cross section morphology of fracture. Standard compression test is performed for the stress–strain behavior of the specimen. Our results show that the octahedral lattice with the edge diameter of 0.4 mm and unit cell length of 1.5 mm has the best mechanical property which is close to the human bone. The value of equivalent elastic modulus increases with the increase in the edge diameter. The SLM technology proves to be an effective processing way for the fabrication of complex microstructures with porosity. In addition, the specimen exhibits isotropic mechanical performance and homogeneity which significantly meet the requirement of implanted prosthetic medical environment.


2021 ◽  
Vol 60 (1) ◽  
pp. 862-883
Author(s):  
Ha Vinh Ho ◽  
Eunsoo Choi ◽  
Jun Won Kang

Abstract The NiTi SMA fibers were cold drawn to introduce prestrain, and then, they were made to crimped fibers with various wave depths. The recovery stress was measured, which was useful for closing the cracks in fiber-reinforced concrete. The pullout behaviors were also examined considering the existing recovery stress, and it is found that the recovery stress did not influence so much on the pullout behavior. According to the pullout results, a parametric study used a finite element analyzing (FEA) model to quantify the cohesive surface model’s parameters and the value of the friction coefficient. Then, the developed model is used to investigate the crimped fiber’s pullout behavior with various embedded lengths and wave depths. When the fiber in the elastic range, the peak stresses significantly raise due to increasing embedded waves; they show a linear relationship. After the yield of the SMA fiber, the peak stresses are also a function of embedded waves; however, the increasing trend is slow down. Concerning the cost, the even distribution of the fiber, and for guaranteeing the fiber experiences the pulling out, it is recommended that the embedded lengths and corresponding wave depths should be designed to avoid the yield.


2021 ◽  
Vol 60 (1) ◽  
pp. 15-24
Author(s):  
Silu Liu ◽  
Yonghao Zhao

Abstract Metals with a bimodal grain size distribution have been found to have both high strength and good ductility. However, the coordinated deformation mechanisms underneath the ultrafine-grains (UFGs) and coarse grains (CGs) still remain undiscovered yet. In present work, a bimodal Cu with 80% volume fraction of recrystallized micro-grains was prepared by the annealing of equal-channel angular pressing (ECAP) processed ultrafine grained Cu at 473 K for 40 min. The bimodal Cu has an optimal strength-ductility combination (yield strength of 220 MPa and ductility of 34%), a larger shear fracture angle of 83∘ and a larger area reduction of 78% compared with the as-ECAPed UFG Cu (yield strength of 410 MPa, ductility of 16%, shear fracture angle of 70∘, area reduction of 69%). Grain refinement of recrystallized micro-grains and detwinning of annealing growth twins were observed in the fractured bimodal Cu tensile specimen. The underlying deformation mechanisms for grain refinement and detwinning were analyzed and discussed.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document