Performance evaluation of a RC frame structure from element level to structure level

Author(s):  
Kshama Hemkar ◽  
Laxmi Kant Mishra ◽  
Goutam Ghosh
2011 ◽  
Vol 255-260 ◽  
pp. 644-648
Author(s):  
Yan Xia Ye ◽  
Hua Huang ◽  
Dong Wei Li

Comparative analyses of twenty-eight finite element structures with filler walls were established to study dynamic characteristics of RC frame structures under seismic waves. The results of these analyses show that filler walls have little influence on vibration modes of the structure. But as a result of soft storey in the bottom of building caused by reduction of the filler walls, vibration modes have a great influence. As the stiffness of filler wall decrease, the stiffness of soft storey decrease shapely, vibration mode curve becomes much smoother. Considering the filler wall has influence on the vibration periods of framework, the reduction factor of 0.7 should be taken. The influence of filler wall to the value of lateral drift and storey displacement angle of frame can not be ignored. The main effect factors to the dynamic characteristics of framework are included quantity, location, material of the fill wall and the selection of seismic waves.


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


2012 ◽  
Vol 568 ◽  
pp. 85-88
Author(s):  
Ming Gao

In 5·12 Wenchuan earthquake, most of the buildings were damaged at different degrees in Mianyang. To analysis seismic damage of RC frame structure building, and investigate its reinforcement situation,the results show that: For destruction of frame column or bottom frame structure column, enlarge section method is used mostly for reinforcement in civil engineering;To serious damage of affiliated structure such as filler wall and Parapet, most of them will be demolished and built again, and add constructional column; To the situation of concrete bottom plate with crack, paste carbon fiber sheet or bottom plant steel was used depending on the structural damage degree, and jet concrete for strengthening.


2010 ◽  
Vol 97 (28) ◽  
pp. 25-32
Author(s):  
Marin Lupoae ◽  
Carmen Bucur ◽  
Cătălin Baciu

2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Guang Yang ◽  
Erfeng Zhao ◽  
Xiaoya Li ◽  
Emad Norouzzadeh Tochaei ◽  
Kan Kan ◽  
...  

The reinforced concrete (RC) frame with masonry infill wall is one of the most common structural systems in many countries. It has been widely recognized that the infill wall has significant effects on the seismic performance of RC frame structure. During the Wenchuan earthquake (China 2008), a lot of infilled RC frame structures suffered serious damages due to the detrimental effects brought about by the infill wall rigidly connected to the surrounding frame. In order to solve this problem, flexible connection, introduced by Chinese designers, is recommended by the updated Chinese seismic design code, because of its effect to reduce the unfavorable interaction between infill wall and frame. Although infilled RC frame structure with flexible connection has a lot of advantages, but because of the lack of research, this structure type is seldom used in practical engineering. Therefore, it is of great significance to scientifically investigate and analyze the effects of flexible connection on structure behaviors of infilled RC frame. In this study, a macrofinite element numerical simulation method for infilled RC frame with flexible connection was investigated. Firstly, the effects of connection between infill wall and surrounding frame on in-plane behaviors of infilled RC frame were discussed. Secondly, based on deeply studying the equivalent diagonal strut models for infilled RC frame with rigid connection, an improved equivalent diagonal strut model for infilled RC frame with flexible connection was proposed. Employed with inversion analysis theory, the parameter in the proposed model was estimated through artificial fish swarm algorithm. Finally, applied with the existing experiment results, a case study was conducted to verify the effectiveness and feasibility of the proposed model.


2011 ◽  
Vol 255-260 ◽  
pp. 2632-2636
Author(s):  
Zhong Wei Liu ◽  
Yu Bai ◽  
Xiang Hui Xiong ◽  
Jun Ting Li

Based on the appraisal reports of primary and secondary school in Kunming and the statistical analysis of RC frame structure buildings, evaluation of earthquake resistance capacity was given. Problems affecting functions of the RC frame structure were analyzed to facilitate the reconstruction and fetrofit of this sort of RC frame structure.


2012 ◽  
Vol 446-449 ◽  
pp. 2326-2330 ◽  
Author(s):  
Huan Jun Jiang ◽  
Hai Yan Gao ◽  
Bin Wang

Staircases in Reinforced Concrete (RC) frame structures suffered severe damages in recent earthquakes although they are regarded as critically important passages during emergencies. Staircases act as the first line of defense in earthquakes, and therefore they first yield and fail. Then they lose the action of safe passages so that the anticipated seismic performance objectives cannot be satisfied. To make sure that staircases work as safe passages in strong earthquakes, the current Chinese code for seismic design of buildings claims special requirements on the design of staircases. At first, the influence of staircases on the structural behavior of a typical RC frame structure is studied by the comparison of internal force in the structural members considering and neglecting the effect of staircases under frequent earthquakes. Besides, the effect of staircases on the yielding and failing mechanism of the frame structure is investigated through static elasto-plastic analyses. From this study the reason of the damages suffered by cast-in-site staircases in RC frame structures under earthquakes can be understood.


Structures ◽  
2016 ◽  
Vol 5 ◽  
pp. 13-22 ◽  
Author(s):  
A. Melani ◽  
R.K. Khare ◽  
R.P. Dhakal ◽  
J.B. Mander

Sign in / Sign up

Export Citation Format

Share Document