massively separated flows
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Pedro Stefanin Volpiani ◽  
Morten Meyer ◽  
Lucas Franceschini ◽  
Julien Dandois ◽  
Florent Renac ◽  
...  

2019 ◽  
Author(s):  
Κωνσταντίνος Διακάκης

Στην παρούσα διατριβή μελετήθηκε η μετάβαση της ροής από στρωτή σε τυρβώδη καθώς και η συμπεριφορά ροών μεγάλων αριθμών Reynolds στα πλαίσια προσομοίωσης τους με μεθόδους υψηλής πιστότητας.Για την προσομοίωση ροών με μετάβαση εξετάστηκαν μέθοδοι με υπολογισμό οριακού στρώματος και μέθοδοι με εξισώσεις μεταφοράς. Αυτές περιλαμβάνουν την μέθοδο e N καθώς και τα μοντέλα γ-Re θ , γ και AFT. Όλες οι μέθοδοι δοκιμάστηκαν σε αεροτομές, πτέρυγες και άτρακτο γενικής μορφής, σε εφαρμογές οι οποίες προέρχονταν από τους τομείς της αεροναυτικής και της αιολικής ενέργειας. Οι συγκρίσεις αφορούσαν κατά κύριο λόγο σε αεροδυναμικά φορτία και θέσεις μετάβασης. Στα πλαίσια διδιάστατων προσομοιώσεων, η μέθοδος e N με υπολογισμό οριακού στρώματος και το μοντέλο AFT έδωσαν πιο ακριβή αποτελέσματα από τις υπόλοιπες μεθόδους. Το μοντέλο γ-Re θ είναι μια καλή εναλλακτική, αρκεί ο αριθμός Reynolds να μην υπερβαίνει τα 6 εκατομμύρια. Πέραν αυτού του ορίου, η ακρίβεια των αποτελεσμάτων του μοντέλου μειώνεται σημαντικά. Ωστόσο, η μέθοδος e N και το μοντέλο AFT δεν δύνανται να χρησιμοποιηθούν για την μοντελοποίηση τρισδιάστατης μετάβασης στο πλαίσιο τρισδιάστατων προσομοιώσεων. Σε αυτές τις περιπτώσεις, το μοντέλο γ-Re θ εμπλουτισμένο με όρους εγκάρσιας ροής μπορεί να δώσει καλά αποτελέσματα, αρκεί ο αριθμός Reynolds να είναι στα αποδεκτά για το μοντέλο όρια. Όσον αφορά στις μεθόδους προσομοίωσης τύρβης υψηλής πιστότητας, εξετάστηκαν οι μέθοδοι Large Eddy Simulation (LES) και Detached Eddy Simulation (DES). Για τις προσομοιώσεις LES χρησιμοποιήθηκε το μοντέλο μικρών κλιμάκων του Smagorinsky. Η εφαρμογή του DES περιελάμβανε τις μεθόδους Delayed DES (DDES) και Improved Delayed DES (IDDES). Το ενδιαφέρον εστιάστηκε στην μοντελοποίηση ροών με μεγάλη αποκόλληση. Τόσο το LES όσο και το DES ήταν σε θέση να δώσουν πιο ακριβή αποτελέσματα από τους απλούς, μη-μόνιμους Reynolds Averaged Navier Stokes υπολογισμούς (Unsteady RANS) σε σύγκριση με πειράματα και υπολογιστικά αποτελέσματα από τη βιβλιογραφία. Το μοντέλο DES θεωρείται λιγότερο απαιτητικό σε υπολογιστικούς πόρους λόγω της μοντελοποίησης του οριακού στρώματος η οποία οδηγεί σε μικρότερες απαιτήσεις πλέγματος κοντά στην στερεή επιφάνεια. Ωστόσο, το DES δεν αναμένεται να μπορεί να δώσει αξιόπιστα αποτελέσματα σε ροές όπου η παρουσία και η εξέλιξη μικρών κλιμάκων τύρβης στο οριακό στρώμα είναι σημαντική, και που το μοντέλο LES πλεονεκτεί εκ κατασκευής. Σχετικά σημειώνεται ότι οι LES προσομοιώσεις δεν έφτασαν στα υπολογιστικά τους όρια όσον αφορά στο πλέγμα. Για να παραχθούν αξιόπιστα αποτελέσματα σε αυτές τις περιπτώσεις πρέπει να χρησιμοποιηθεί LES με πυκνό υπολογιστικό πλέγμα.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yue Liu ◽  
Xiaorong Guan ◽  
Cheng Xu

A new hybrid modelling method termed improved scale-adaptive simulation (ISAS) is proposed by introducing the von Karman operator into the dissipation term of the turbulence scale equation, proper derivation as well as constant calibration of which is presented, and the typical circular cylinder flow at Re = 3900 is selected for validation. As expected, the proposed ISAS approach with the concept of scale-adaptive appears more efficient than the original SAS method in obtaining a convergent resolution, meanwhile, comparable with DES in visually capturing the fine-scale unsteadiness. Furthermore, the grid sensitivity issue of DES is encouragingly remedied benefiting from the local-adjusted limiter. The ISAS simulation turns out to attractively represent the development of the shear layers and the flow profiles of the recirculation region, and thus, the focused statistical quantities such as the recirculation length and drag coefficient are closer to the available measurements than DES and SAS outputs. In general, the new modelling method, combining the features of DES and SAS concepts, is capable to simulate turbulent structures down to the grid limit in a simple and effective way, which is practically valuable for engineering flows.


2015 ◽  
Vol 32 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Weilin Zheng ◽  
Chao Yan ◽  
Hongkang Liu ◽  
Dahai Luo

2014 ◽  
Vol 31 (4) ◽  
pp. 742-757 ◽  
Author(s):  
Rainald Lohner ◽  
Dominic Britto ◽  
Alexander Michailski ◽  
Eberhard Haug

Purpose – During a routine benchmarking and scalability study of CFD codes for typical large-scale wind engineering runs, it was observed that the resulting loads for buildings varied considerably with the number of parallel processors employed. The differences remained very small at the beginning of a typical run, and then grew progressively to a state of total dissimilitude. A “butterfly-effect” for such flows was suspected and later confirmed. The paper aims to discuss these issues. Design/methodology/approach – A series of numerical experiments was conducted for massively separated flows. The same geometry – a cube in front of an umbrella – was used to obtain the flowfields using different grids, different numbers of domains/processors, slightly different inflow conditions and different codes. Findings – In all of these cases the differences remained very small at the beginning of a typical run, they then grew progressively to a state of total dissimilitude. While the mean and maximum loads remained similar, the actual (deterministic) instantiations were completely different. The authors therefore suspect that for flows of this kind a “butterfly effect” is present, whereby even very small (roundoff) errors can have a pronounced effect on the actual deterministic instantiation of a flowfield. Research limitations/implications – This implies that for flows of this kind the CFD runs have to be carried out to much larger times than formerly expected (and done) in order to obtain statistically relevant ensembles. Practical implications – For practical calculations this implies running to much larger times in order to reach statistically relevant ensembles, with the associated much higher CPU time requirements. Originality/value – This is the first time such a finding has been reported in the numerical wind engineering context.


Author(s):  
B. A. Younis ◽  
B. Arnold ◽  
P. Weihing ◽  
B. Weigand

The paper reports on work in progress aimed at improving the prediction of heat transfer in turbulent separated flows. The cases considered here are the flow over a heated backward-facing step, and the periodic flow in a heated channel with square ribs. The predictions were obtained using two models not hitherto employed in these flows: a Reynolds-stress transport closure in which the model for the fluctuating pressure-strain correlations that satisfies the requirement of model objectivity while not requiring wall-damping functions, and a model for the turbulent heat fluxes that is explicit, algebraic and correctly allows for these fluxes to depend on the gradients of mean temperature and velocity. Both models have previously given good predictions in attached shear flows and the objective of this work was to determine whether this improvement carries over to separated flows. It was found that distinct improvements in the prediction of skin friction and Nusselt number can only be obtained by extending the models so as to allow the computations to extend through the viscous sub-layer directly to the wall.


Sign in / Sign up

Export Citation Format

Share Document