magnetic encephalography
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
M.N. Ustinin ◽  
A.I. Boyko ◽  
S.D. Rykunov

New method to study the correlation of the human brain compartments based on the magnetic encephalography data analysis was proposed. The time series for the correlation analysis are generated by the method of virtual electrodes. First, the multichannel time series of the subject with confirmed attention deficit and hyperactivity disorder are transformed into the functional tomogram - spatial distribution of the magnetic field sources structure on the discrete grid. This structure is provided by the inverse problem solution for all elementary oscillations, found by the Fourier transform. Each frequency produces the elementary current dipole located in the node of the 3D grid. The virtual electrode includes the part of space, producing the activity under study. The time series for this activity is obtained by the summation of the spectral power of all sources, covered by the virtual electrode. To test the method, in this article we selected ten basic compartments of the brain, including frontal lobe, parietal lobe, occipital lobe and others. Each compartment was included in the virtual electrode, obtained from the subjects' MRI. We studied the correlation between compartments in the frequency bands, corresponding to four brain rhythms: theta, alpha, beta, and gamma. The time series for each electrode were calculated for the period of 300 seconds. The correlation coefficient between power series was calculated on the 1 second epoch and then averaged. The results were represented as matrices. The method can be used to study correlations of the arbitrary parts of the brain in any spectral band.


Author(s):  
N.M. Pankratova ◽  
M.A Polikarpov ◽  
E.F. Tarasov ◽  
S.D. Rykunov ◽  
M.N. Ustinin

Spectral and spatial characteristics of the encephalograms, registered while speech perception and production, are considered. Systematical bibliographical review is presented, including the articles studying the speech sources spectra and their location in the brain. Encephalography is selected as a basic experimental approach. Advantages of the magnetic encephalography, experimental difficulties and possible artifacts are noted. It is concluded that brain speech activity possesses a great variety of spectral and spatial features. The method of functional tomography based on magnetic encephalography data is proposed to quantitatively analyze this activity in detail. The method makes it possible to extract and precisely localize in space various spectral features of the brain activity studied in experiments on speech research.


Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
N.M. Pankratova

New method for the magnetic encephalography data analysis was proposed, making it possible to transform multichannel time series into the spatial structure of the human brain activity. In this paper we applied this method to the analysis of magnetic encephalograms, obtained from subjects with attention deficit and hyperactivity disorder. We have considered the experimental data, obtained with 275-channel magnetic encephalographs in McGill University and Montreal University. Magnetic encephalograms of the brain spontaneous activity were registered for 5 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the broad frequency band 0.3-50 Hz. It was found that frequency band relations are different in different experiments. We proposed to use these relations by the summary electric power produced by the sources in selected frequency band. The delta rhythm in frequency band 0.3 to 4 Hz was studied in detail. It was found, that many delta rhythm dipoles were localized outside the brain, and their spectrum consists of the heartbeat harmonics. It was concluded that in experiments considered, the delta rhythm represents the vascular activity of the head. To study the spatial distribution of all rhythms from theta to gamma the partial spectra of the brain divisions were calculated. The partial spectrum includes all frequencies produced by the dipole sources located in the region of brain selected at the magnetic resonance image. The method can be further applied to study encephalograms in various psychic disorders.


Author(s):  
S.D. Rykunov ◽  
E.D. Rykunova ◽  
A.I. Boyko ◽  
M.N. Ustinin

A new method of analyzing magnetic encephalography data, the virtual electrode method, was developed. According to magnetic encephalography data, a functional tomogram is constructed — the spatial distribution of field sources on a discrete grid. A functional tomogram displays on the head space the information contained in the multichannel time series of an encephalogram. This is achieved by solving the inverse problem for all elementary oscillations extracted using the Fourier transform. Each oscillation frequency corresponds to a three-dimensional grid node in which the source is located. The user sets the location, size and shape of the brain area for a detailed study of the frequency structure of a functional tomogram - a virtual electrode. The set of oscillations that fall into a given region represents the partial spectrum of this region. The time series of the encephalogram measured by the virtual electrode is restored using this spectrum. The method was applied to the analysis of magnetic encephalography data in two variations - a virtual electrode of a large radius and a point virtual electrode.


2019 ◽  
pp. 1-24
Author(s):  
Mikhail Nikolaevich Ustinin ◽  
Stanislav Dmitrievich Rykunov ◽  
Anna Ivanovna Boyko ◽  
Olga Aleksandrovna Maslova ◽  
Natalia Mikhailovna Pankratova

Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
K.D. Walton ◽  
...  

New method for the magnetic encephalography data analysis was proposed. The method transforms multichannel time series into the spatial structure of the human brain activity. In this paper we further develop this method to determine the dominant direction of the electrical sources of brain activity at each node of the calculation grid. We have considered the experimental data, obtained with three 275-channel magnetic encephalographs in New York University, McGill University and Montreal University. The human alpha rhythm phenomenon was selected as a model object. Magnetic encephalograms of the brain spontaneous activity were registered for 5-7 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the frequency band 8-12 Hz. In order to estimate the local activity direction, at the each node of calculation grid the vector of the inverse problem solution was selected, having the maximal spectral power. So, the 3D-map of the brain activity vector field was produced – the directional functional tomogram. Such maps were generated for 15 subjects and some common patterns were revealed in the directions of the alpha rhythm elementary sources. The proposed method can be used to study the local properties of the brain activity in any spectral band and in any brain compartment.


Author(s):  
С.Д. Рыкунов ◽  
S.D. Rykunov

MathBrain is a cloud-based application, distributed under Software as a Service model. This application provides access to several algorithms of the multichannel encephalography data analysis. Spectral methods include direct and inverse Fourier transforms and quantitative analysis. Statistical methods involve principal component analysis and independent component analysis. The field maps of elementary components can be used to solve the magnetic encephalography inverse problem and to display the result at the magnetic resonance image. The application is designed to be used in human brain studies without mathematical training.


Sign in / Sign up

Export Citation Format

Share Document