Improved neural network-based sensor fault detection and estimation strategy for an autonomous aerial vehicle

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mati Ullah ◽  
Chunhui Zhao ◽  
Hamid Maqsood ◽  
Mahmood Ul Hassan ◽  
Muhammad Humayun

PurposeThis paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with greater accuracy concerning other conventional approaches in the literature.Design/methodology/approachThe proposed scheme integrates a baseline nonlinear controller with an improved radial basis function neural network (IRBFNN) to detect different kinds of anomalies and failures that may occur in the attitude’s sensors of an autonomous aerial vehicle. An integral sliding mode concept is used as auto-tune weight update law in the IRBFNN instead of conventional weight update laws to optimize its learning capability without computational complexities. The simulations results and stability analysis validate the promising contributions of the suggested methodology over the other conventional approaches.FindingsThe performance of the proposed control algorithm is compared with the conventional radial basis function neural network (RBFNN), multi-layer perceptron neural network (MLPNN) and high gain observer (HGO) for a quadrotor vehicle suffering from various kinds of faults, e.g. abrupt, incipient and intermittent. From the simulation results obtained, it is found that the proposed algorithm’s performance in faults detection and estimation is relatively better than the rest of the methodologies.Practical implicationsFor the improvement in the stability and safety of an autonomous aerial vehicle during flight operations, quick identification and reconstruction of attitude’s sensor faults and failures always play a crucial role. Efficient fault detection and estimation scheme are considered indispensable for an error-free and safe flight mission of an autonomous aerial vehicle.Originality/valueThe proposed scheme introduces RBFNN techniques to detect and estimate the quadrotor attitude’s sensor faults and failures efficiently. An integral sliding mode effect is used as the network’s backpropagation law to automatically modify its learning parameters accordingly, thereby speeding up the learning capabilities as compared to the conventional neural network backpropagation laws. Compared with the other investigated techniques, the proposed strategy achieve remarkable results in the detection and estimation of various faults.

Author(s):  
Chenguang Liu ◽  
Wei Wang ◽  
Yong Guo ◽  
Shumin Chen ◽  
Aijun Li ◽  
...  

The dual-body tethered satellite system, which consists of two spacecraft connected by a single tether, is one of the most promising configurations in numerous space missions. To ensure the stability of deployment, the radial basis function neural network-based adaptive terminal sliding mode controller is proposed for the dual-body tethered satellite system with the model uncertainty and external disturbance. The terminal sliding mode controller serves as the main control framework for its properties of the strong robustness and finite-time convergence. The radial basis function neural network is adopted to approximate the model uncertainty, in which the weight vector of the radial basis function neural networks and the unknown upper bound of the external disturbance are estimated by using two adaptive laws. Finally, the Lyapunov theory and numerical simulations are used to prove the validity of the proposed controller.


2020 ◽  
Vol 8 (3) ◽  
pp. 210 ◽  
Author(s):  
Renqiang Wang ◽  
Donglou Li ◽  
Keyin Miao

To improve the tracking stability control of unmanned surface vehicles (USVs), an intelligent control algorithm was proposed on the basis of an optimized radial basis function (RBF) neural network. The design process was as follows. First, the adaptation value and mutation probability were modified to improve the traditional optimization algorithm. Then, the improved genetic algorithms (GA) were used to optimize the network parameters online to improve their approximation performance. Additionally, the RBF neural network was used to approximate the function uncertainties of the USV motion system to eliminate the chattering caused by the uninterrupted switching of the sliding surface. Finally, an intelligent control law was introduced based on the sliding mode control with the Lyapunov stability theory. The simulation tests showed that the intelligent control algorithm can effectively guarantee the control accuracy of USVs. In addition, a comparative study with the sliding mode control algorithm based on an RBF network and fuzzy neural network showed that, under the same conditions, the stabilization time of the intelligent control system was 33.33% faster, the average overshoot was reduced by 20%, the control input was smoother, and less chattering occurred compared to the previous two attempts.


2011 ◽  
Vol 141 ◽  
pp. 303-307 ◽  
Author(s):  
Sheng Bin Hu ◽  
Min Xun Lu

To achieve the tracing control of a three-links spatial robot, a adaptive fuzzy sliding mode controller based on radial basis function neural network is proposed in this paper. The exponential sliding mode controller is divided into two parts: equivalent part and exponential corrective part. To realize the control without the model information of the system, a radial basis function neural network is designed to estimate the equivalent part. To diminish the chattering, a fuzzy controller is designed to adjust the corrective part according to sliding surface. The simulation studies have been carried out to show the tracking performance of a three-links spatial robot. Simulation results show the validity of the control scheme.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141982996 ◽  
Author(s):  
Lili Wan ◽  
Yixin Su ◽  
Huajun Zhang ◽  
Yongchuan Tang ◽  
Binghua Shi

A scheme to solve the course keeping problem of the unmanned surface vehicle with nonlinear and uncertain characteristics and unknown external disturbances is investigated in this article. The chattering existing in global fast terminal sliding mode controller in solving the course keeping problem of the unmanned surface vehicle with external disturbance is analyzed. To reduce the chattering and eliminate the influence of the unknown disturbance, an adaptive global fast terminal sliding mode controller based on radial basis function neural network is developed. The equivalent control that usually requires a precise model information of the system is computed using the radial basis function neural network. The weights of the neural network are online adjusted according to the adaptive law that is derived using Lyapunov method to ensure the stability of the closed-loop system. Using the online learning of the neural network, the nonlinear uncertainty of the system and the unknown disturbance of external environment are compensated, and the system chattering is reduced effectively as well. The simulation results demonstrate that the proposed controller can achieve a good performance regarding the fast response and smooth control.


Sign in / Sign up

Export Citation Format

Share Document