fast mas
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Diego A. Pizzagalli ◽  
Moria Smoski ◽  
Yuen-Siang Ang ◽  
Alexis E. Whitton ◽  
Gerard Sanacora ◽  
...  

2021 ◽  
Author(s):  
Alons Lends ◽  
Melanie Berbon ◽  
Birgit Habenstein ◽  
Yusuke Nishiyama ◽  
Antoine Loquet

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is introduced at fast MAS (70 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15N-1H pairs, a sequential walk through DQ (CA+CO) resonance is obtained. Our approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


Sign in / Sign up

Export Citation Format

Share Document