min river estuary
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 13 (6) ◽  
pp. 687-700
Author(s):  
Qing Xu ◽  
Yan Jiang ◽  
Lü‐ping Fang ◽  
Min Liu ◽  
Xiao‐bin Jiang

2021 ◽  
Author(s):  
Shaohui Yao ◽  
Zhigao Sun ◽  
Yajin Li ◽  
Xiao Li

Abstract Vanadium (V) plays important roles in physio-ecological processes of marsh plants. To investigate the effects of spatial expansion between native invasive species (Phragmites australis, PA) and common native species (Cyperus malaccensis, CM) on temporal variations and bioaccumulation of V in coastal marshes of the Min River estuary, in situ filed sampling was conducted in PA marsh (PAM, before expansion), CM marsh (CMM, before expansion) and ecotonal marsh (EM, during expansion, marsh plants were denoted by PA' and CM') at different seasons by space-for-time substitution method. Results showed that, over all sampling seasons, the mean V contents in marsh soils ranged from 99.71 to 108.41 mg·kg-1 which exceeded its background value in soils of Fujian province (78.3 mg·kg-1). The V levels in soils differed among seasons or marshes. Higher V contents in soils of PAM, EM and CMM generally occurred in spring and winter. Over all sampling seasons, the V levels in profiles of EM were much higher than those of PAM and CMM. The temporal variation of V levels in soils of EM might rest with the alterations of soil pH, SOM and plant ecological traits during the spatial expansion. Although the V contents in PA, PA', CM' and CM differed among tissues, both the roots/stems (R/S) and roots/leaves (R/L) ratios were larger than 1 while the stems/leaves (S/L) ratios were less than 1, implying that the values in roots were much higher than those in other tissues. The V levels in tissues differed among species or seasons, which could be interpreted by the differences in ecological traits among plants and the competitive absorption for V by plants during the spatial expansion. Allocations of V in organs differed among seasons or species and roots were the main V stock of plant subsystems. This paper found that the V in soils of the Min River estuary existed enrichment process and the spatial expansion between PA and CM promoted its enrichment in soils and its bioaccumulation by plants.


2021 ◽  
Vol 277 ◽  
pp. 116757
Author(s):  
Xiaofei Li ◽  
Dengzhou Gao ◽  
Lijun Hou ◽  
Wei Qian ◽  
Min Liu ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shuijing Zhai ◽  
Siting Qiu ◽  
Hui Gao ◽  
Guanyun Hou

Tidal marshes are important recycling areas for biogenic silica (BSi) and macro- and microelements at the land–sea interface and are key locations for examining the decomposition process of wetland plant litter. In this study, in situ decomposition experiments were conducted with Phragmites australis, Cyperus malaccensis, and Spartina alterniflora in the Min River estuary wetland. Litterbags of 0.2-mm mesh size were used to evaluate the litter decomposition process and residual values of BSi and macro- and microelements, including C, N, Cr, Cu, Cd, Zn, Pb, Al, Mn, and Fe over 520 days. The litter decomposition rate significantly differed among species in the following order: C. malaccensis (0.005 d–1) > S. alterniflora (0.004 d–1) > P. australis (0.003 d–1) with BSi release rates of 98.64%, 96.75%, and 97.23%, respectively. Although there were net releases of BSi, C, and N from the three litter species, continuous decrease in the BSi/(C, N) ratio indicated that BSi was removed from the litter much faster than C and N. The accumulation index results showed that Cu, Pb, Al, and Fe were net-accumulated in the litter, whereas Cd, Mn, Cr, and Zn were predominantly released during litter decay. Pearson’s correlation analysis results showed that the amounts of N, Cu, Cd, Pb, Al, and Fe in the litter restrained BSi release with a significant negative correlation. These findings in the Min River estuary have important implications for geochemical cycles within wetland systems and the transport processes of potential nutrients out of the system.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3390
Author(s):  
Linlong Wang ◽  
Li Lin ◽  
Yuan Li ◽  
Yankuo Xing ◽  
Bin Kang

Globally, marine fisheries have declined under multiple stresses including overfishing, climate change, and habitat degradation. The Min River Estuary, as the largest estuary in southeastern China, has confronted this situation over recent decades. In this study, the dominant species of fish stocks in the Min River Estuary, including Coilia mystus, Cynoglossus abbreviates, Collichthys lucidus, Amblychaeturichthys hexanema, Polydactylus sextarius, Harpodon nehereus, and Secutor ruconius, were evaluated by the length-based Bayesian biomass estimator method (LBB). Outcomes could be grouped into three categories as healthy, showing the lowest exploitation rate (E: 0.31–0.43) and highest relative biomass (B/Bmsy: 1.30–1.90), including S. ruconius, C. mystus, and H. nehereus; overfished, with a medium E (0.50–0.58) and B/Bmsy (0.68–0.79), including A. hexanema and C. abbreviates; and collapsed, with the highest E (0.89–0.92) and lowest B/Bmsy (0.03–0.21), including C. lucidus and P.sextarius. Corresponding imperative countermeasures such as using larger-sized mesh gears and reducing fishing intensity should be deployed according to the current status of each species for sustainable fishery exploitation and fish conservation.


2020 ◽  
Vol 36 (5) ◽  
pp. 750-752
Author(s):  
Qing Xu ◽  
Lan‐lan Zhang ◽  
Qing‐qiang Ren ◽  
Yan Jiang ◽  
Min Liu

Sign in / Sign up

Export Citation Format

Share Document