scholarly journals Using Attribute-Based Encryption on IoT Devices with instant Key Revocation

Author(s):  
Marten Fischer ◽  
Alfred Scheerhorn ◽  
Ralf Tonjes
2021 ◽  
Vol 170 ◽  
pp. 151-163
Author(s):  
Pericle Perazzo ◽  
Francesca Righetti ◽  
Michele La Manna ◽  
Carlo Vallati

Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


Author(s):  
Benedetto Girgenti ◽  
Pericle Perazzo ◽  
Carlo Vallati ◽  
Francesca Righetti ◽  
Gianluca Dini ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tao Zhang ◽  
Xiongfei Song ◽  
Lele Zheng ◽  
Yani Han ◽  
Kai Zhang ◽  
...  

Mobile crowdsensing systems use the extraction of valuable information from the data aggregation results of large-scale IoT devices to provide users with personalized services. Mobile crowdsensing combined with edge computing can improve service response speed, security, and reliability. However, previous research on data aggregation paid little attention to data verifiability and time sensitivity. In addition, existing edge-assisted data aggregation schemes do not support access control of large-scale devices. In this study, we propose a time-sensitive and verifiable data aggregation scheme (TSVA-CP-ABE) supporting access control for edge-assisted mobile crowdsensing. Specifically, in our scheme, we use attribute-based encryption for access control, where edge nodes can help IoT devices to calculate keys. Moreover, IoT devices can verify outsourced computing, and edge nodes can verify and filter aggregated data. Finally, the security of the proposed scheme is theoretically proved. The experimental results illustrate that our scheme outperforms traditional ones in both effectiveness and scalability under time-sensitive constraints.


2019 ◽  
Vol 4 (1) ◽  
pp. 237
Author(s):  
Nurhidayah Muhammad ◽  
Jasni Mohamad Zain

The purpose of this paper is to propose a conceptual model for data security in the Internet of thing devices. Estimated by Jumoki in early 2018 to 2022, there will be about 18 billion connected IoT devices. Therefore many issue related to IoT devices were discussed especially data security. Cryptography with lightweight features is one of the focus area by researchers to develop a powerful cryptography scheme for IoT devices. Lightweight cryptography scheme has been discussed and proposed widely recently. There are AES, PRESENT, Hash algorithm declared as a lightweight algorithm under consideration in ISO/IEC 29192 “Lightweight Cryptography”. Unfortunately these lightweight algorithm is one-to-one communication cryptography technique. This algorithm is very practical to implement for individuals or for small group communication but unpractical when implemented in a big company where many users can become a bottleneck. Therefore we propose a lightweight Ciphertext Policy-Attribute Based Encryption (CP-ABE) algorithm to implement in IoT devices. CP-ABE algorithm is one-to-many technique suitable for secure grouping communication, but this algorithm is not a lightweight feature. Therefore this paper proposes a lightweight CP-ABE algorithm for IoT devices.  


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Suhui Liu ◽  
Jiguo Yu ◽  
Chunqiang Hu ◽  
Mengmeng Li

Cloud-assisted Internet of Things (IoT) significantly facilitate IoT devices to outsource their data for high efficient management. Unfortunately, some unsettled security issues dramatically impact the popularity of IoT, such as illegal access and key escrow problem. Traditional public-key encryption can be used to guarantees data confidentiality, while it cannot achieve efficient data sharing. The attribute-based encryption (ABE) is the most promising way to ensure data security and to realize one-to-many fine-grained data sharing simultaneously. However, it cannot be well applied in the cloud-assisted IoT due to the complexity of its decryption and the decryption key leakage problem. To prevent the abuse of decryption rights, we propose a multiauthority ABE scheme with white-box traceability in this paper. Moreover, our scheme greatly lightens the overhead on devices by outsourcing the most decryption work to the cloud server. Besides, fully hidden policy is implemented to protect the privacy of the access policy. Our scheme is proved to be selectively secure against replayable chosen ciphertext attack (RCCA) under the random oracle model. Some theory analysis and simulation are described in the end.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1695 ◽  
Author(s):  
Al-Dahhan ◽  
Shi ◽  
Lee ◽  
Kifayat

Recently, using advanced cryptographic techniques to process, store, and share datasecurely in an untrusted cloud environment has drawn widespread attention from academicresearchers. In particular, Ciphertext‐Policy Attribute‐Based Encryption (CP‐ABE) is a promising,advanced type of encryption technique that resolves an open challenge to regulate fine‐grainedaccess control of sensitive data according to attributes, particularly for Internet of Things (IoT)applications. However, although this technique provides several critical functions such as dataconfidentiality and expressiveness, it faces some hurdles including revocation issues and lack ofmanaging a wide range of attributes. These two issues have been highlighted by many existingstudies due to their complexity which is hard to address without high computational cost affectingthe resource‐limited IoT devices. In this paper, unlike other survey papers, existing single andmultiauthority CP‐ABE schemes are reviewed with the main focus on their ability to address therevocation issues, the techniques used to manage the revocation, and comparisons among themaccording to a number of secure cloud storage criteria. Therefore, this is the first review paperanalysing the major issues of CP‐ABE in the IoT paradigm and explaining the existing approachesto addressing these issues.


Privacy has become an imperative term in the recent technology developments. Lots of data are being collected through every digital activity of users. The expeditious development of IoT applications have raised the concern about the privacy of the IoT systems. The data collected via IoT sensors can reveal the daily behavior of the users, location, and other sensitive information. Hence, it is necessary to preserve the privacy of data collected by IoT devices. A large number of techniques and approaches have been implemented and used in different IoT based applications such as cloud computing based IoT, fog computing based IoT, blockchain based IoT and trajectory applications. In this paper, we present a detailed investigation of the existing approaches to preserve the privacy of data in IoT applications. The techniques like k-anonymity, secure multiparty computation, attribute based encryption and homomorphic encryption are analyzed. Finally, a comparative analysis of privacy preserving techniques with its applications are presented.


2020 ◽  
Vol 20 (4) ◽  
pp. 44-54
Author(s):  
K.Y. Ponomarev ◽  
◽  
A.A. Zaharov ◽  

The term «Internet of Medical Things» (IoMT ) refers to a set of devices and technologies for remote monitoring of patients’ health using wearable devices. One primary problem with pa-tient’s data is ensuring privacy and resource intensive protection when it is transmitted over open communication channels and stored in cloud systems. However, when it comes to millions of IoT devices, technologies that have already become classic for Internet resources are not suit-able in many aspects at once: low computing power, out of memory, limited battery capacity and etc. The work considered Attribute-based encryption for ensuring security of personified data in IoMT networks. Also, the research studied the issues of patient’s data confidentiality in cloud systems, management of cryptographic keys and data sharing control. The algorithms for effective and secure solution were proposed. We have proposed a framework for processing patient data from portable diagnostic devices using ABE methods. The results of load testing of the prototype are presented too


Sign in / Sign up

Export Citation Format

Share Document