scholarly journals Continuity of random attractors on a topological space and fractional delayed FitzHugh-Nagumo equations with WZ-noise

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yangrong Li ◽  
Shuang Yang ◽  
Guangqing Long

<p style='text-indent:20px;'>We study the continuity of a family of random attractors parameterized in a topological space (perhaps non-metrizable). Under suitable conditions, we prove that there is a residual dense subset <inline-formula><tex-math id="M1">\begin{document}$ \Lambda^* $\end{document}</tex-math></inline-formula> of the parameterized space such that the binary map <inline-formula><tex-math id="M2">\begin{document}$ (\lambda, s)\mapsto A_\lambda(\theta_s \omega) $\end{document}</tex-math></inline-formula> is continuous at all points of <inline-formula><tex-math id="M3">\begin{document}$ \Lambda^*\times \mathbb{R} $\end{document}</tex-math></inline-formula> with respect to the Hausdorff metric. The proofs are based on the generalizations of Baire residual Theorem (by Hoang et al. PAMS, 2015), Baire density Theorem and a convergence theorem of random dynamical systems from a complete metric space to the general topological space, and thus the abstract result, even restricted in the deterministic case, is stronger than those in literature. Finally, we establish the residual dense continuity and full upper semi-continuity of random attractors for the random fractional delayed FitzHugh-Nagumo equation driven by nonlinear Wong-Zakai noise, where the size of noise belongs to the parameterized space <inline-formula><tex-math id="M4">\begin{document}$ (0, \infty] $\end{document}</tex-math></inline-formula> and the infinity of noise means that the equation is deterministic.</p>

1990 ◽  
Vol 41 (2) ◽  
pp. 271-281
Author(s):  
Nikolaos S. Papageorgiou

Let F: T → 2x \ {} be a closed-valued multifunction into a separable Banach space X. We define the sets and We prove various convergence theorems for those two sets using the Hausdorff metric and the Kuratowski-Mosco convergence of sets. Then we prove a density theorem of CF and a corresponding convexity theorem for F(·). Finally we study the “differentiability” properties of K(·). Our work extends and improves earlier ones by Artstein, Bridgland, Hermes and Papageorgiou.


1978 ◽  
Vol 21 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Shwu-Yeng T. Lin ◽  
You-Feng Lin

AbstractIt is proved, in particular, that a topological space X is a Baire space if and only if every real valued function f: X →R is almost continuous on a dense subset of X. In fact, in the above characterization of a Baire space, the range space R of real numbers may be generalized to any second countable, Hausdorfï space that contains infinitely many points.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


1974 ◽  
Vol 62 ◽  
pp. 11-18
Author(s):  
L. Markus

In order to analyse generic or typical properties of dynamical systems we consider the space of all C1-vector fields on a fixed differentiable manifold M. In the C1-metric, assuming M is compact, is a complete metric space and a generic subset is an open dense subset or an intersection of a countable collection of such open dense subsets of . Some generic properties (i.e. specifying generic subsets) in are described. For instance, generic dynamic systems have isolated critical points and periodic orbits each of which is hyperbolic. If M is a symplectic manifold we can introduce the space of all Hamiltonian systems and study corresponding generic properties.


2019 ◽  
Vol 69 (3) ◽  
pp. 699-706 ◽  
Author(s):  
Alexander V. Osipov

Abstract For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology. A Menger space is a topological space in which for every sequence of open covers 𝓤1, 𝓤2, … of the space there are finite sets 𝓕1 ⊂ 𝓤1, 𝓕2 ⊂ 𝓤2, … such that family 𝓕1 ∪ 𝓕2 ∪ … covers the space. In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that Cλ(X) is Menger if and only if Cλ(X) is σ-compact; Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Gang Wang ◽  
Yanbin Tang

We prove an abstract result on random invariant sets of finite fractal dimension. Then this result is applied to a stochastic semilinear degenerate parabolic equation and an upper bound is obtained for the random attractors of fractal dimension.


2017 ◽  
Vol 27 (02) ◽  
pp. 1750019 ◽  
Author(s):  
Anhui Gu ◽  
Yangrong Li

The paper is devoted to establishing a combination of sufficient criterion for the existence and upper semi-continuity of random attractors for stochastic lattice dynamical systems. By relying on a family of random systems itself, we first set up the abstract result when it is convergent, uniformly absorbing and uniformly random when asymptotically null in the phase space. Then we apply the results to the second-order lattice dynamical system driven by multiplicative white noise. It is indicated that the criterion depending on the dynamical system itself seems more applicable than the existing ones to lattice differential models.


1992 ◽  
Vol 46 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Warren B. Moors

For a set E in a metric space X the index of non-separability is β(E) = inf{r > 0: E is covered by a countable-family of balls of radius less than r}.Now, for a set-valued mapping Φ from a topological space A into subsets of a metric space X we say that Φ is β upper semi-continuous at t ∈ A if given ε > 0 there exists a neighbourhood U of t such that β(Φ(U)) < ε. In this paper we show that if the subdifferential mapping of a continuous convex function Φ is β upper semi-continuous on a dense subset of its domain then Φ is Fréchet differentiable on a dense Gδ subset of its domain. We also show that a Banach space is Asplund if and only if every weak* compact subset has weak* slices whose index of non-separability is arbitrarily small.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950037 ◽  
Author(s):  
Yangrong Li ◽  
Fuzhi Li

This paper is devoted to the convergence of bi-spatial random attractors as a family of bounded domains is extended to be unbounded. Some criteria in terms of expansion and restriction are provided to ensure that the unbounded-domain attractor is approximated by the family of bounded-domain attractors in both upper and lower semi-continuity senses. The theoretical results are applied to show that the stochastic FitzHugh–Nagumo coupled equations have an attractor in [Formula: see text]-times Lebesgue space irrespective of whether the domain is bounded or unbounded. Furthermore, we prove that the family of bounded-domain attractors continuously converges to the unbounded-domain attractor, and the latter can be constructed by the metric-limit set of all bounded-domain attractors.


Sign in / Sign up

Export Citation Format

Share Document