constraint networks
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Matteo Zavatteri ◽  
Carlo Combi ◽  
Luca Viganò

AbstractA current research problem in the area of business process management deals with the specification and checking of constraints on resources (e.g., users, agents, autonomous systems, etc.) allowed to be committed for the execution of specific tasks. Indeed, in many real-world situations, role assignments are not enough to assign tasks to the suitable resources. It could be the case that further requirements need to be specified and satisfied. As an example, one would like to avoid that employees that are relatives are assigned to a set of critical tasks in the same process in order to prevent fraud. The formal specification of a business process and its related access control constraints is obtained through a decoration of a classic business process with roles, users, and constraints on their commitment. As a result, such a process specifies a set of tasks that need to be executed by authorized users with respect to some partial order in a way that all authorization constraints are satisfied. Controllability refers in this case to the capability of executing the process satisfying all these constraints, even when some process components, e.g., gateway conditions, can only be observed, but not decided, by the process engine responsible of the execution. In this paper, we propose conditional constraint networks with decisions (CCNDs) as a model to encode business processes that involve access control and conditional branches that may be both controllable and uncontrollable. We define weak, strong, and dynamic controllability of CCNDs as two-player games, classify their computational complexity, and discuss strategy synthesis algorithms. We provide an encoding from the business processes we consider here into CCNDs to exploit off-the-shelf their strategy synthesis algorithms. We introduce $$\textsc {Zeta}$$ Z E T A , a tool for checking controllability of CCNDs, synthesizing execution strategies, and executing controllable CCNDs, by also supporting user interactivity. We use $$\textsc {Zeta}$$ Z E T A to compare with the previous research, provide a new experimental evaluation for CCNDs, and discuss limitations.


Author(s):  
Michael Sioutis ◽  
Zhiguo Long ◽  
Tomi Janhunen

We introduce and study a notion of robustness in Qualitative Constraint Networks (QCNs), which are typically used to represent and reason about abstract spatial and temporal information. In particular, given a QCN, we are interested in obtaining a robust qualitative solution, or, a robust scenario of it, which is a satisfiable scenario that has a higher perturbation tolerance than any other, or, in other words, a satisfiable scenario that has more chances than any other to remain valid after it is altered. This challenging problem requires to consider the entire set of satisfiable scenarios of a QCN, whose size is usually exponential in the number of constraints of that QCN; however, we present a first algorithm that is able to compute a robust scenario of a QCN using linear space in the number of constraints. Preliminary results with a dataset from the job-shop scheduling domain, and a standard one, show the interest of our approach and highlight the fact that not all solutions are created equal.


2019 ◽  
Vol 797 ◽  
pp. 17-41 ◽  
Author(s):  
Michael Sioutis ◽  
Anastasia Paparrizou ◽  
Jean-François Condotta

2019 ◽  
Vol 64 ◽  
pp. 987-1023
Author(s):  
Allan R. Leite ◽  
Fabricio Enembreck

The distributed constraint optimization problem (DCOP) has emerged as one of the most promising coordination techniques in multiagent systems. However, because DCOP is known to be NP-hard, the existing DCOP techniques are often unsuitable for large-scale applications, which require distributed and scalable algorithms to deal with severely limited computing and communication. In this paper, we present a novel approach to provide approximate solutions for large-scale, complex DCOPs. This approach introduces concepts of synchronization of coupled oscillators for speeding up the convergence process towards high-quality solutions. We propose a new anytime local search DCOP algorithm, called Coupled Oscillator OPTimization (COOPT), which amounts to iteratively solving a DCOP by agents exchanging local information that brings them to a consensus. We empirically evaluate COOPT on constraint networks involving hundreds of variables with different topologies, domains, and densities. Our experimental results demonstrate that COOPT outperforms other incomplete state-of-the-art DCOP algorithms, especially in terms of the agents' communication cost and solution quality.


2018 ◽  
Vol 27 (04) ◽  
pp. 1860001 ◽  
Author(s):  
Michael Sioutis ◽  
Zhiguo Long ◽  
Sanjiang Li

We introduce, study, and evaluate a novel algorithm in the context of qualitative constraint-based spatial and temporal reasoning that is based on the idea of variable elimination, a simple and general exact inference approach in probabilistic graphical models. Given a qualitative constraint network [Formula: see text], our algorithm utilizes a particular directional local consistency, which we denote by [Formula: see text]-consistency, in order to efficiently decide the satisfiability of [Formula: see text]. Our discussion is restricted to distributive subclasses of relations, i.e., sets of relations closed under converse, intersection, and weak composition and for which weak composition distributes over non-empty intersections for all of their relations. We demonstrate that enforcing [Formula: see text]-consistency in a given qualitative constraint network defined over a distributive subclass of relations allows us to decide its satisfiability, and obtain similar useful results for the problems of minimal labelling and redundancy. Further, we present a generic method that allows extracting a scenario from a satisfiable network, i.e., an atomic satisfiable subnetwork of that network, in a very simple and effective manner. The experimentation that we have conducted with random and real-world qualitative constraint networks defined over a distributive subclass of relations of the Region Connection Calculus and the Interval Algebra, shows that our approach exhibits unparalleled performance against state-of-the-art approaches for checking the satisfiability of such constraint networks.


10.29007/1g5q ◽  
2018 ◽  
Author(s):  
Malumbo Chipofya

Local Compatibility Matrices (LCMs) are mechanisms for computing heuristics for graph matching that are particularly suited for matching qualitative constraint networks enabling the transfer of qualitative spatial knowledge between qualitative reasoning systems or agents. A system of LCMs can be used during matching to compute a pre-move evaluation, which acts as a prior optimistic estimate of the value of matching a pair of nodes, and a post-move evaluation which adjusts the prior estimate in the direction of the true value upon completing the move. We present a metaheuristic method that uses reinforcement learning to improve the prior estimates based on the posterior evaluation. The learned values implicitly identify unprofitable regions of the search space. We also present data structures that allow a more compact implementation, limiting the space and time complexity of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document