home service robot
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 20)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiansheng Peng ◽  
Hemin Ye ◽  
Qiwen He ◽  
Yong Qin ◽  
Zhenwu Wan ◽  
...  

At present, the functions of home service robots are not perfect, and home service robot systems that can independently complete autonomous inspections and home services are still lacking. In response to this problem, this paper designs a smart home service robot system based on ROS. The system uses Raspberry Pi 3B as the main control to manage the nodes of each sensor. CC2530 sets up a ZigBee network to collect home environmental information and control home electrical appliances. The image information of the home is collected by the USB camera. The human speech is recognized by Baidu Speech Recognition API. When encountering a dangerous situation, the GSM module is used to give users SMS and phone alarms. Arduino mega2560 is used as the bottom controller to control the movement of the service robot. The indoor environment map of the home is constructed by the lidar and the attitude sensor. The service robot finally designed and developed realizes the functions of wireless control of home appliances, voice remote control, autonomous positioning and navigation, liquefied gas leakage alarm, and human infrared detection alarm. Compared with the household service robots in the related literature, the household service robots developed by us have more complete functions. And the robot system has completed the task of combining independent patrol and home service well.


Author(s):  
LAI Zhi-jie ◽  
CAO Ming-yu ◽  
ZHANG Zhi-ming ◽  
YU You-ling

2020 ◽  
pp. 1-16
Author(s):  
Yuxin Zhang ◽  
Qiang Gao ◽  
Yu Song ◽  
Zhe Wang

BACKGROUND: People with severe neuromuscular disorders caused by an accident or congenital disease cannot normally interact with the physical environment. The intelligent robot technology offers the possibility to solve this problem. However, the robot can hardly carry out the task without understanding the subject’s intention as it relays on speech or gestures. Brain-computer interface (BCI), a communication system that operates external devices by directly converting brain activity into digital signals, provides a solution for this. OBJECTIVE: In this study, a noninvasive BCI-based humanoid robotic system was designed and implemented for home service. METHODS: A humanoid robot that is equipped with multi-sensors navigates to the object placement area under the guidance of a specific symbol “Naomark”, which has a unique ID, and then sends the information of the scanned object back to the user interface. Based on this information, the subject gives commands to the robot to grab the wanted object and give it to the subject. To identify the subject’s intention, the channel projection-based canonical correlation analysis (CP-CCA) method was utilized for the steady state visual evoked potential-based BCI system. RESULTS: The offline results showed that the average classification accuracy of all subjects reached 90%, and the online task completion rate was over 95%. CONCLUSION: Users can complete the grab task with minimum commands, avoiding the control burden caused by complex commands. This would provide a useful assistance means for people with severe motor impairment in their daily life.


Sign in / Sign up

Export Citation Format

Share Document