metamorphic mechanism
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 119-128
Author(s):  
Haifeng Luo ◽  
Chaoyu Chen

In the abandoned mine area with Karst landform in China, soils are few and thin but rocks are common, traditional planting hole diggers are unequal to work in rocks for vegetation restoration. A reamer bit with variable lateral drilling radius was designed based on the PDC (polycrystalline diamond compact) bit technology and metamorphic mechanism. Two lateral camber blades with PDC teeth were installed inside the bit body, a screw mechanism was employed as the actuation and a spatial double triangle mechanism was taken for the transmission. The curve of the camber blade was specially defined thus the reaming load was decentralized to 85.7% teeth on the blade. The kinematics of the lateral reamer bit was analysed, the mapping models from the actuation to the reaming radius and speed were established. Concrete samples were reamed indoors from 240mm to 407mm in diameter, the reaming cutting load and time length were measured and analysed. The lateral reamer bit was approved with the experiment results, this study provided equipment support for digging the planting hole in rocky abandoned mine areas and also expanded the PDC bit application.


Author(s):  
Francisco Javier Espinosa-Garcia ◽  
Ricardo Tapia-Herrera ◽  
Esther Lugo-González ◽  
Manuel Arias-Montiel

2021 ◽  
pp. 268-278
Author(s):  
Xinyuan Yao ◽  
Xingdong Wang ◽  
Wei Sun ◽  
Haoke Bai

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Qiang Yang ◽  
Guangbo Hao ◽  
Shujun Li ◽  
Hongguang Wang ◽  
Haiyang Li

Abstract As a type of multiconfiguration mechanism that can operate in an under-actuated state, metamorphic mechanisms were proposed more than two decades ago and attracted significant interest. Studies on structural synthesis of metamorphic mechanisms tend to focus more on metamorphic techniques and the structural synthesis of source mechanisms for metamorphic mechanisms. By designing different constraint architectures of metamorphic joints, multistructures can be obtained from the same source metamorphic mechanism. To determine the constraint architectures of metamorphic joints and their different assembly combinations, a kinematic status matrix and a corresponding constraint status matrix are constructed based on the metamorphic cyclogram of a source mechanism. According to the equivalent resistance gradient model and the constraint status matrix, an equivalent resistance matrix for the metamorphic joints is proposed. A structural synthesis matrix of the metamorphic mechanism is then obtained from the equivalent resistance matrix by deducing the constraint form vectors of the metamorphic joints. Furthermore, a kinematic diagram synthesis of the source metamorphic mechanism of a planar single-loop metamorphic mechanism is proposed, which is based on only the 14 one- or zero-degrees-of-freedom linkage groups. The entire structural design method of a metamorphic mechanism is based on the structural synthesis matrix and is presented as a systematic process. Finally, the proposed structural design approach is illustrated by two examples to verify its feasibility and practicality. This study provides an effective method for designing a practical multi-mobility and multiconfiguration planar single-loop metamorphic mechanism with a single actuator.


Author(s):  
Qiang Yang ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
Shujun Li

Abstract This paper approaches the type synthesis of multi-degree of freedom planar metamorphic mechanisms with a single driver in a systematic process. The process is facilitated by implementing a constraint status matrix and a equivalent resistance matrix as a method for identifying an appropriate structure of planar metamorphic mechanisms with a single driver. Multi-structures can be obtained from the same source metamorphic mechanism by designing different constraint architectures of metamorphic joints. To determine the constraint architectures of metamorphic joints and their different assembly combinations, the constraint status matrix is built based on the task-based metamorphic cyclogram of a source mechanism. According to the equivalent resistance gradient model and the constraint status matrix, an equivalent resistance matrix for the metamorphic joints is proposed. A structural synthesis matrix of the metamorphic mechanism is then obtained from the equivalent resistance matrix by deducing the constraint-form vectors of the metamorphic joints. Furthermore, an effective kinematic diagram synthesis of the source mechanism of the planar metamorphic mechanism is proposed which is based only on the 14 one or zero degree-of-freedom (DOF) linkage groups. The entire structural design method of a metamorphic mechanism is based on the structural synthesis matrix and given in steps. Finally, a proposed structural design approach is illustrated by two examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yanyan Song ◽  
Boyan Chang ◽  
Guoguang Jin ◽  
Zhan Wei ◽  
Bo Li

This paper studied the impact dynamic modeling of the planar constrained metamorphic mechanism (PCMM) during configuration transformation. Based on the dynamic theory of the multi-rigid-body system and the coefficient of restitution equation, a new method for dynamic modeling of PCMM considering impact motions generated by configuration transformation is presented, which can be treated as a theoretical foundation for performance design and dynamic control. Firstly, the topology theory based on the impact motion can be classified as the stable impact motion and the mobile impact motion, which is the prerequisite for dynamic modeling and simulation. Secondly, the stable and mobile impact dynamic models for PCMM are established according to the dynamic theory of the multi-rigid-body system. Then, using these models, the corresponding impulse solving models are deduced combining with the coefficient of restitution equation. Finally, the examples of the stable impact motion and the mobile impact motion are respectively given, and the configuration-complete dynamic simulations are carried out. By comparing with the dynamic models without considering the impact motion, the dynamic characteristics of PCMM are analyzed. The theory and method proposed in this paper can be also applied in general planar robotic systems to deal with the problem of internal collision dynamics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


Sign in / Sign up

Export Citation Format

Share Document