scholarly journals An Approach for the Impact Dynamic Modeling and Simulation of Planar Constrained Metamorphic Mechanism

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yanyan Song ◽  
Boyan Chang ◽  
Guoguang Jin ◽  
Zhan Wei ◽  
Bo Li

This paper studied the impact dynamic modeling of the planar constrained metamorphic mechanism (PCMM) during configuration transformation. Based on the dynamic theory of the multi-rigid-body system and the coefficient of restitution equation, a new method for dynamic modeling of PCMM considering impact motions generated by configuration transformation is presented, which can be treated as a theoretical foundation for performance design and dynamic control. Firstly, the topology theory based on the impact motion can be classified as the stable impact motion and the mobile impact motion, which is the prerequisite for dynamic modeling and simulation. Secondly, the stable and mobile impact dynamic models for PCMM are established according to the dynamic theory of the multi-rigid-body system. Then, using these models, the corresponding impulse solving models are deduced combining with the coefficient of restitution equation. Finally, the examples of the stable impact motion and the mobile impact motion are respectively given, and the configuration-complete dynamic simulations are carried out. By comparing with the dynamic models without considering the impact motion, the dynamic characteristics of PCMM are analyzed. The theory and method proposed in this paper can be also applied in general planar robotic systems to deal with the problem of internal collision dynamics.

Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2011 ◽  
Vol 66-68 ◽  
pp. 2034-2040
Author(s):  
Qin He Gao ◽  
Xiang Yang Li

This paper employed the theories of multibody system dynamics to analyze the multi-rigid-body model of erection system and build the general dynamic models in absolute coordinates. The impact theory of contact mechanics and nonlinear spring-damper force function were used to model the impact problems between rods of multi-stage hydraulic cylinder of erection system and educe the dynamic models of multi-rigid-body erection system with impact. An automatic violation correction method according to the step of integration time was given to solve the violation which is an incident problem in numerical integration of dynamic models in absolute coordinates. Simulation results show that these dynamic models are effective.


2017 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Akuro Big-Alabo

The impact of two hard deformable spheres is revisited with the aim of investigating the constituent rigid body motions and indentation response of each sphere during collision. The latter are determined theoretically and the theoretical solutions are validated by comparing with numerical solutions of the coupled nonlinear dynamic models for impact of two hard deformable spheres. For elastic impact events, normalized tabulated solutions are derived using the Force Indentation Linearisation Method (FILM) and the tabulated solutions can be used to generate actual rigid body motions and indentation histories for each of the colliding spheres without need for numerical or finite element solutions. The analysis shows that the rigid body motion and local compliance response of each sphere depend on: (a) ratio of mass of sphere to effective mass of impact system, and (b) ratio of initial velocity of sphere to initial relative velocity of impact system. Finally, the 2-D collision problem is discussed and a simple procedure to determine the unique solution of all four unknowns is presented.


Author(s):  
Inhwan Han ◽  
B. J. Gilmore

Abstract When a multi-body system collides with a single body or with another multi-body system, impact dynamics with friction should be considered. This paper presents a general computer oriented analysis of impact dynamics incorporating friction. The presence of friction between sliding contacts during the impact makes the problem difficult since the events such as reverse sliding or sticking, which may occur at different times throughout the impact, must be determined. The boundary representations of the bodies are used to solve for the velocities at the points of contact. Using this information and a classification of the modes of impact, the frictional impact with sliding contact problem is solved. Using a high speed video camera, the resulting computer strategy is experimentally verified. Simulation and experimental results agree.


1993 ◽  
Vol 115 (3) ◽  
pp. 412-422 ◽  
Author(s):  
Inhwan Han ◽  
B. J. Gilmore

When a multi-body system collides with a single body or with another multi-body system, impact dynamics with friction should be considered. This paper presents a general computer oriented analysis of impact dynamics incorporating friction. The presence of friction between sliding contacts during the impact makes the problem difficult since the events such as reverse sliding or sticking, which may occur at different times throughout the impact, must be determined. The boundary representations of the bodies are used to solve for the velocities at the points of contact. Using this information and a classification of the modes of impact, the frictional impact with sliding contact problem is solved. Using a high speed video camera, the resulting computer strategy is experimentally verified. Simulation and experimental results agree.


2013 ◽  
Vol 705 ◽  
pp. 540-545
Author(s):  
Svetlana Polukoshko

The impact phenomenon may be used for task-oriented changing of rigid body motion. When moving body encounters with some obstacle all parameters of motion are changing as a result of impact and trajectory and type of motion are also changing. In this work the conversion of translatory motion of prismatic rigid body into plane or rotation and conversion of plane motion of cylindrical body due to impact are considered. The conditions of conversion of one type of motion into another and parameters post-impact motion are studied. Problems are solved in the framework of rigid body motion, using rigid body impact theory. Studying of such phenomena is important for location of parts on industrial conveyors, feeders, etc.


2005 ◽  
Vol 11 (4) ◽  
pp. 459-479 ◽  
Author(s):  
F. Peterka ◽  
B. Blazejczyk-Okolewska

In this paper we show some aspects of the dynamical behavior of a two-degrees-of-freedom system forced with an external harmonic force, which impacts cause a reduction of the vibration amplitude of the basic system. The purpose of the presented investigations is to determine the coefficient of restitution and the damping coefficient of the fender that ensure the required degree of a reduction in these vibrations. The regions of existence bifurcation diagrams and motion trajectories of different kinds of impact motion are presented and analyzed. The impact damper of vibrations is compared with a linear damper. The investigations have been conducted by means of numerical simulations.


Author(s):  
Yuwen Li ◽  
Fengfeng Xi ◽  
Kamran Behdinan

Dynamic modeling and simulation of percussive impact riveting are presented for robotic automation. This is an impact induced process to deform rivets, which involves an impact rivet gun driven under pneumatic pressure to pound a rivet against a bucking bar. To model this process, first, a new approach is developed to determine the hammer output speed under input pneumatic pressure. Second, impact dynamics is applied to model the impact acting on the rivet under the hammer hits. Finally, elastoplastic analysis is carried out to derive nonlinear equations for the determination of permanent (plastic) deformations of the rivet when hitting the bucking bar. For simulation, numerical integration algorithms are applied to solve the impact dynamic model and determine the riveting time according to riveting specifications. Riveting tests are carried out for model validation. Agreement between the simulation and experimental results shows the effectiveness of the proposed method.


2020 ◽  
pp. 41-50
Author(s):  
Ph. S. Kartaev ◽  
I. D. Medvedev

The paper examines the impact of oil price shocks on inflation, as well as the impact of the choice of the monetary policy regime on the strength of this influence. We used dynamic models on panel data for the countries of the world for the period from 2000 to 2017. It is shown that mainly the impact of changes in oil prices on inflation is carried out through the channel of exchange rate. The paper demonstrates the influence of the transition to inflation targeting on the nature of the relationship between oil price shocks and inflation. This effect is asymmetrical: during periods of rising oil prices, inflation targeting reduces the effect of the transfer of oil prices, limiting negative effects of shock. During periods of decline in oil prices, this monetary policy regime, in contrast, contributes to a stronger transfer, helping to reduce inflation.


Sign in / Sign up

Export Citation Format

Share Document