symplectic cobordism
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 33 (1) ◽  
pp. 97-140
Author(s):  
I. Panin ◽  
C. Walter

The quaternionic Grassmannian H Gr ⁡ ( r , n ) \operatorname {H Gr}(r,n) is the affine open subscheme of the usual Grassmannian parametrizing those 2 r 2r -dimensional subspaces of a 2 n 2n -dimensional symplectic vector space on which the symplectic form is nondegenerate. In particular, we have HP n = H Gr ⁡ ( 1 , n + 1 ) \operatorname {HP}^n = \operatorname {H Gr}(1,n+1) . For a symplectically oriented cohomology theory A A , including oriented theories but also the Hermitian K \operatorname {K} -theory, Witt groups, and algebraic symplectic cobordism, we have A ( HP n ) = A ( pt ) [ p ] / ( p n + 1 ) A(\operatorname {HP}^n) = A(\operatorname {pt})[p]/(p^{n+1}) . Borel classes for symplectic bundles are introduced in the paper. They satisfy the splitting principle and the Cartan sum formula, and they are used to calculate the cohomology of quaternionic Grassmannians. In a symplectically oriented theory the Thom classes of rank 2 2 symplectic bundles determine Thom and Borel classes for all symplectic bundles, and the symplectic Thom classes can be recovered from the Borel classes. The cell structure of the H Gr ⁡ ( r , n ) \operatorname {H Gr}(r,n) exists in cohomology, but it is difficult to see more than part of it geometrically. An exception is HP n \operatorname {HP}^n where the cell of codimension  2 i 2i is a quasi-affine quotient of A 4 n − 2 i + 1 \mathbb {A}^{4n-2i+1} by a nonlinear action of G a \mathbb {G}_a .


2018 ◽  
Vol 12 (03) ◽  
pp. 547-623 ◽  
Author(s):  
Georgios Dimitroglou Rizell ◽  
Michael G. Sullivan

We prove that the number of Reeb chords between a Legendrian submanifold and its contact Hamiltonian push-off is at least the sum of the [Formula: see text]-Betti numbers of the submanifold, provided that the contact isotopy is sufficiently small when compared to the smallest Reeb chord on the Legendrian. Moreover, the established invariance enables us to use two different contact forms: one for the count of Reeb chords and another for the measure of the smallest length, under the assumption that there is a suitable symplectic cobordism from the latter to the former. The size of the contact isotopy is measured in terms of the oscillation of the contact Hamiltonian, together with the maximal factor by which the contact form is shrunk during the isotopy. The main tool used is a Mayer–Vietoris sequence for Lagrangian Floer homology, obtained by “neck-stretching” and “splashing”.


2018 ◽  
Vol 40 (3) ◽  
pp. 699-713 ◽  
Author(s):  
HANSJÖRG GEIGES ◽  
KAI ZEHMISCH

We construct an infinite family of odd-symplectic forms (also known as Hamiltonian structures) on the $3$-sphere $S^{3}$ that do not admit a symplectic cobordism to the standard contact structure on $S^{3}$. This answers in the negative a question raised by Joel Fish motivated by the search for minimal characteristic flows.


2018 ◽  
Vol 29 (04) ◽  
pp. 1850026 ◽  
Author(s):  
Mirko Klukas

Given two open books with equal pages, we show the existence of an exact symplectic cobordism whose negative end equals the disjoint union of the contact manifolds associated to the given open books, and whose positive end induces the contact manifold associated to the open book with the same page and concatenated monodromy. Using similar methods, we show the existence of strong fillings for contact manifolds associated with doubled open books, a certain class of fiber bundles over the circle obtained by performing the binding sum of two open books with equal pages and inverse monodromies. From this we conclude, following an outline by Wendl, that the complement of the binding of an open book cannot contain any local filling obstruction. Given a contact [Formula: see text]-manifold, according to Eliashberg there is a symplectic cobordism to a fibration over the circle with symplectic fibers. We extend this result to higher dimensions recovering a recent result by Dörner–Geiges–Zehmisch. Our cobordisms can also be thought of as the result of the attachment of a generalized symplectic [Formula: see text]-handle.


2012 ◽  
Vol 7 (1) ◽  
pp. 31-152
Author(s):  
Aleksandr L. Anisimov ◽  
Vladimir V. Vershinin

1995 ◽  
Vol 38 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Vladimir V. Vershinin ◽  
Aleksandr L. Anisimov

AbstractA series of elements of order 4 in the symplectic cobordism ring is constructed.


1994 ◽  
Vol 46 (3) ◽  
pp. 485-516 ◽  
Author(s):  
Boris I. Botvinnik ◽  
Stanley O. Kochman

AbstractIn this paper we construct higher two-torsion elements of all orders in the symplectic cobordism ring. We begin by constructing higher torsion elements in the symplectic cobordism ring with singularities using a geometric approach to the Adams- Novikov spectral sequence in terms of cobordism with singularities. Then we show how these elements determine particular elements of higher torsion in the symplectic cobordism ring.


Sign in / Sign up

Export Citation Format

Share Document