Military Medical Research
Latest Publications


TOTAL DOCUMENTS

356
(FIVE YEARS 172)

H-INDEX

17
(FIVE YEARS 7)

Published By Springer (Biomed Central Ltd.)

2054-9369, 2054-9369

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhen Shen ◽  
Christoph M. Tang ◽  
Guang-Yu Liu

AbstractBacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ling-Zhuo Kong ◽  
Rui-Li Zhang ◽  
Shao-Hua Hu ◽  
Jian-Bo Lai

AbstractMilitary psychiatry, a new subcategory of psychiatry, has become an invaluable, intangible effect of the war. In this review, we begin by examining related military research, summarizing the related epidemiological data, neuropathology, and the research achievements of diagnosis and treatment technology, and discussing its comorbidity and sequelae. To date, advances in neuroimaging and molecular biology have greatly boosted the studies on military traumatic brain injury (TBI). In particular, in terms of pathophysiological mechanisms, several preclinical studies have identified abnormal protein accumulation, blood–brain barrier damage, and brain metabolism abnormalities involved in the development of TBI. As an important concept in the field of psychiatry, TBI is based on organic injury, which is largely different from many other mental disorders. Therefore, military TBI is both neuropathic and psychopathic, and is an emerging challenge at the intersection of neurology and psychiatry.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Tayfun Bilgiç ◽  
Ümit İnce ◽  
Fehmi Narter

Abstract Background After renal trauma, surgical treatment is vital, but sometimes there may be loss of function due to fibrosis. This study aimed to evaluate the effect of autologous omentum flaps on injured renal tissues in a rat model. Methods A total of 30 Wistar albino rats were included and randomly divided equally into a control group and four intervention groups. Iatrogenic renal injuries were repaired using a surgical technique (primary repair 1 group and primary repair 2 group) or transposition of the autologous omentum (omentum repair 1 group and omentum repair 2 group). Blood samples were taken preoperatively and on the 1st and 7th postoperative days in all groups and on the 18th postoperative day in the control and two intervention groups. All rats were sacrificed on the 7th or 18th day postoperatively, and their right kidneys were taken for histopathological evaluation. Results The mean urea level significantly decreased from day 1 to day 7 and from day 1 to day 18 in the omentum repair 2 group (P = 0.005 and P = 0.004, respectively). There were no other significant changes in urea or creatinine levels within the intervention groups (P > 0.05). There was no significant correlation between the urea and creatinine levels and the histological scores (P > 0.05). The primary repair 1 and 2 groups had significantly higher median granulation and inflammation scores in the kidney specimen than the control and omentum repair groups (P < 0.05). The omentum repair 2 group had significantly lower median granulation and inflammation scores in the surrounding tissues than the primary repair 2 group (P < 0.05). The completion score for the healing process in the kidney specimen was significantly higher in the omentum repair groups than in the primary repair groups (P < 0.05). The omentum repair 2 group had significantly lower median granulation and inflammation scores in the surrounding tissues than the primary repair 2 group (P < 0.05). Granulation degree in the kidney specimen was strongly and positively correlated with the inflammation degree (r = 0.824, P < 0.001) and foreign body reaction in the kidney specimen (r = 0.872, P < 0.001) and a strong and negative correlation with the healing process completion score in the kidney (r = − 0.627, P = 0.001). Inflammation degree in the kidney specimen was strongly and positively correlated with the foreign body reaction in the kidney specimen (r = 0.731, P = 0.001) and strongly and negatively correlated with the healing process completion score in the kidney specimen (r = − 0.608, P = 0.002). Conclusion Autologous omentum tissue for kidney injury repair attenuated inflammation and granulation. Additionally, the use of omental tissue to facilitate healing of kidney injury may theoretically lead to a more effective healing process and reduced fibrosis and tissue and function loss.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexis Rump ◽  
Stefan Eder ◽  
Cornelius Hermann ◽  
Andreas Lamkowski ◽  
Patrick Ostheim ◽  
...  

AbstractIn the case of a terrorist attack by a “dirty bomb”, blast injuries, external irradiation and the incorporation of radioactivity are to be expected. Departing from information about the radiological attack scenario with cesium-137 in the U.S. National Scenario Planning Guide, we estimated the radiological doses absorbed. Similar calculations were performed for a smaller plume size and a detonation in a subway. For conditions as described in the U.S. scenario, the committed effective dose amounted to a maximum of 848 mSv, even for very unfavorable conditions. Red bone marrow equivalent doses are insufficient to induce acute radiation sickness (ARS). In the case of a smaller plume size, the ARS threshold may be exceeded in some cases. In a subway bombing, doses are much higher and the occurrence of ARS should be expected. The health hazards from a dirty bomb attack will depend on the location and the explosive device. The derived Haddon matrix indicates that preparing for such an event includes education of all the medical staff about radiation effects, the time lines of radiation damages and the treatment priorities. Further determinants of the outcome include rapid evacuation even from difficult locations, the availability of a specific triage tool to rapidly identify victims at risk for ARS, the availability of an antidote stockpile and dedicated hospital beds to treat seriously irradiated victims.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wei Hu ◽  
Jia-Wu Liang ◽  
Song Liao ◽  
Zhi-Dong Zhao ◽  
Yu-Xing Wang ◽  
...  

Abstract Background The healing of bone defects can be challenging for clinicians to manage, especially after exposure to ionizing radiation. In this regard, radiation therapy and accidental exposure to gamma (γ)-ray radiation have been shown to inhibit bone formation and increase the risk of fractures. Cortical bone-derived stem cells (CBSCs) are reportedly essential for osteogenic lineages, bone maintenance and repair. This study aimed to investigate the effects of melatonin on postradiation CBSCs and bone defect healing. Methods CBSCs were extracted from C57BL/6 mice and were identified by flow cytometry. Then CBSCs were subjected to 6 Gy γ-ray radiation followed by treatment with various concentrations of melatonin. The effects of exogenous melatonin on the self-renewal and osteogenic capacity of postradiation CBSCs in vitro were analyzed. The underlying mechanisms involved in genomic stability, apoptosis and oxidative stress-related signaling were further analyzed by Western blotting, flow cytometry and immunofluorescence assays. Moreover, postradiation femoral defect models were established and treated with Matrigel and melatonin. The effects of melatonin on postradiation bone healing in vivo were evaluated by micro-CT and pathological analysis. Results The decrease in radiation-induced self-renewal and osteogenic capacity were partially reversed in postradiation CBSCs treated with melatonin (P < 0.05). Melatonin maintained genomic stability, reduced postradiation CBSC apoptosis and intracellular oxidative stress, and enhanced expression of antioxidant-related enzymes (P < 0.05). Western blotting validated the anti-inflammatory effects of melatonin by downregulating interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels via the extracellular regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway. Melatonin was also found to exhibit antioxidant effects via NRF2 signaling. In vivo experiments demonstrated that the newly formed bone in the melatonin plus Matrigel group had higher trabecular bone volume per tissue volume (BV/TV) and bone mineral density values with lower IL-6 and TNF-α levels than in the irradiation and the Matrigel groups (P < 0.05). Conclusion This study suggested that melatonin could protect CBSCs against γ-ray radiation and assist in the healing of postradiation bone defects.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan-Dan Zhou ◽  
Wei-Qi Bai ◽  
Xiao-Tian Zhai ◽  
Li-Ping Sun ◽  
Yong-Su Zhen ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is the most aggressive subtype and occurs in approximately 15–20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, especially in TNBC. LR004-VC-MMAE is a new EGFR-targeting antibody–drug conjugate produced by our laboratory. This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action. Methods LR004-VC-MMAE was prepared by coupling a cytotoxic payload (MMAE) to an anti-EGFR antibody (LR004) via a linker, and the drug-to-antibody ratio (DAR) was analyzed by HIC-HPLC. The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset (GSE41313) and Western blotting. MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE (0, 0.0066, 0.066, 0.66, 6.6 nmol/L), and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation. The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VC-MMAE concentrations (2.5 and 5 nmol/L) with wound healing and Transwell invasion assays. Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells in MDA-MB-468 and MDA-MB-231 cells. The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo. Briefly, BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDA-MB-231 cells. Then they were randomly divided into 4 groups (n = 6 per group) and treated with PBS, naked LR004 (10 mg/kg), LR004-VC-MMAE (10 mg/kg), or doxorubicin, respectively. Tumor sizes and the body weights of mice were measured every 4 days. The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR, ERK, MEK phosphorylation and tumor stemness marker gene expression. Results LR004-VC-MMAE with a DAR of 4.02 were obtained. The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells (P < 0.01). LR004-VC-MMAE inhibited the proliferation of EGFR-positive TNBC cells, and the IC50 values of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were (0.13 ± 0.02) nmol/L and (0.66 ± 0.06) nmol/L, respectively, which were significantly lower than that of cells treated with MMAE [(3.20 ± 0.60) nmol/L, P < 0.01, and (6.60 ± 0.50) nmol/L, P < 0.001]. LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells. Moreover, LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability. In TNBC xenograft models, LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36. Surprisingly, tumor recurrence was not observed until the end of the experiment on day 52. In a mechanistic study, we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G2/M phase in MDA-MB-468 [(34 ± 5)% vs. (12 ± 2)%, P < 0.001] and MDA-MB-231 [(27 ± 4)% vs. (18 ± 3)%, P < 0.01] cells. LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4, Sox2, KLF4 and EpCAM. Conclusions LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes. It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stefan Sammito ◽  
Vedran Hadzic ◽  
Thomas Karakolis ◽  
Karen R. Kelly ◽  
Susan P. Proctor ◽  
...  

Abstract Background Musculoskeletal injuries (MSkIs) are a leading cause of health care utilization, as well as limited duty and disability in the US military and other armed forces. MSkIs affect members of the military during initial training, operational training, and deployment and have a direct negative impact on overall troop readiness. Currently, a systematic overview of all risk factors for MSkIs in the military is not available. Methods A systematic literature search was carried out using the PubMed, Ovid/Medline, and Web of Science databases from January 1, 2000 to September 10, 2019. Additionally, a reference list scan was performed (using the “snowball method”). Thereafter, an international, multidisciplinary expert panel scored the level of evidence per risk factor, and a classification of modifiable/non-modifiable was made. Results In total, 176 original papers and 3 meta-analyses were included in the review. A list of 57 reported potential risk factors was formed. For 21 risk factors, the level of evidence was considered moderate or strong. Based on this literature review and an in-depth analysis, the expert panel developed a model to display the most relevant risk factors identified, introducing the idea of the “order of importance” and including concepts that are modifiable/non-modifiable, as well as extrinsic/intrinsic risk factors. Conclusions This is the qualitative systematic review of studies on risk factors for MSkIs in the military that has attempted to be all-inclusive. A total of 57 different potential risk factors were identified, and a new, prioritizing injury model was developed. This model may help us to understand risk factors that can be addressed, and in which order they should be prioritized when planning intervention strategies within military groups.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cong Zhu ◽  
Dan-Qi Wang ◽  
Hao Zi ◽  
Qiao Huang ◽  
Jia-Min Gu ◽  
...  

Abstract Background Urinary tract infections (UTI), urolithiasis, and benign prostatic hyperplasia (BPH) are three of the most common nonmalignant conditions in urology. However, there is still a lack of comprehensive and updated epidemiological data. This study aimed to investigate the disease burden of UTI, urolithiasis, and BPH in 203 countries and territories from 1990 to 2019. Methods Data were extracted from the Global Burden of Disease 2019, including incident cases, deaths, disability-adjusted life-years (DALYs) and corresponding age-standardized rate (ASR) from 1990 to 2019. Estimated annual percentage changes (EAPC) were calculated to evaluate the trends of ASR. The associations between disease burden and social development degrees were analyzed using a sociodemographic index (SDI). Results Compared with 1990, the incident cases of UTI, urolithiasis, and BPH increased by 60.40%, 48.57%, and 105.70% in 2019, respectively. The age-standardized incidence rate (ASIR) of UTI increased (EAPC = 0.08), while urolithiasis (EAPC = − 0.83) and BPH (EAPC = − 0.03) decreased from 1990 to 2019. In 2019, the age-standardized mortality rate (ASMR) of UTI and urolithiasis were 3.13/100,000 and 0.17/100,000, respectively. BPH had the largest increase (110.56%) in DALYs in the past three decades, followed by UTI (68.89%) and urolithiasis (16.95%). The burden of UTI was mainly concentrated in South Asia and Tropical Latin America, while the burden of urolithiasis and BPH was recorded in Asia and Eastern Europe. Moreover, the ASIR and SDI of urolithiasis in high-SDI regions from 1990 to 2019 were negatively correlated, while the opposite trend was seen in low-SDI regions. In 2019, the ASIR of UTI in females was 3.59 times that of males, while the ASIR of urolithiasis in males was 1.96 times higher than that in females. The incidence was highest in the 30–34, 55–59, and 65–69 age groups among the UTI, urolithiasis, and BPH groups, respectively. Conclusion Over the past three decades, the disease burden has increased for UTI but decreased for urolithiasis and BPH. The allocation of medical resources should be based more on the epidemiological characteristics and geographical distribution of diseases.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xing-Yong Chen ◽  
Shao-Fen Wan ◽  
Nan-Nan Yao ◽  
Ze-Jing Lin ◽  
Yan-Guang Mao ◽  
...  

Abstract Background Disruption of the blood–brain barrier (BBB) after a stroke can lead to brain injury and neurological impairment. Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass peptide 2 (LMP2) in the pathophysiology of ischemia stroke. However, the relationship between the immunoproteasome LMP2 and the BBB remains unclear. Methods Adult male Sprague–Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R). Three days before MCAO, the rats were treated with lentivirus-mediated LMP2 shRNA preparations by stereotactical injection into the ipsilateral hemispheric region. The rat brain microvascular endothelial cell (RBMVEC) line was exposed to oxygen–glucose deprivation/reperfusion (OGD/R) to mimic ischemic conditions in vitro. The RNA interference-mediated knockdown of LMP2 or β-catenin was analysed in vivo and in vitro. Analysis of the quantity of extravasated Evans blue (EB) and cerebral fluorescent angiography were performed to evaluate the integrity of the BBB. Immunofluorescence and Western blotting were employed to detect the expression of target proteins. Cell migration was evaluated using a scratch migration assay. The results of immunofluorescence, Western blotting and cell migration were quantified using the software ImageJ (Version 1.53m). Parametric data from different groups were compared using one-way ANOVA followed by the least significant difference (LSD) test. Results Cerebral ischemia led to lower levels of structural components of the BBB such as tight junction proteins (occludin, claudin-1 and ZO-1) in the MCAO/R group compared with the sham group (P < 0.001). However, inhibition of the immunoproteasome LMP2 restored the expression of these proteins, resulting in higher levels of occludin, claudin-1 and ZO-1 in the LMP2-shRNA group compared with the control-shRNA group (P < 0.001). In addition, inhibition of the immunoproteasome LMP2 contributed to higher microvascular density and decreased BBB permeability [e.g., the quantity of extravasated EB: LMP2-shRNA group (58.54 ± 7.37) µg/g vs. control-shRNA group (103.74 ± 4.32) µg/g, P < 0.001], and promoted the upregulation of Wnt-3a and β-catenin proteins in rats following MCAO/R. In vitro experiments, OGD/R induced marked upregulation of LMP2, proapoptotic protein Bax and cleaved caspase-3, and downregulation of occludin, claudin-1, ZO-1 and Bcl-2, as well as inhibition of the Wnt/β-catenin pathway Wnt-3a and β-catenin proteins in RBMVECs, compared with the control group under normal culture conditions (P < 0.001). However, silencing of LMP2 gene expression reversed these protein changes and promoted proliferation and migration of RBMVECs following OGD/R. Silencing of β-catenin by transfection of RBMVECs with β-catenin-siRNA aggravated the downregulation of tight junction proteins, and reduced the proliferation and migration of RBMVECs following OGD/R, compared with the control-siRNA group (P < 0.001). LMP2-siRNA and β-catenin-siRNA co-transfection partly counteracted the beneficial effects of silencing LMP2-siRNA on the levels of tight junction proteins in RBMVECs exposed to OGD/R. Conclusion This study suggests that inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia-induced BBB injury, and that the molecular mechanism involves the immunoproteasome-regulated activation of the Wnt/β-catenin signalling pathway under ischemic conditions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
You Zheng ◽  
Lu-Lin Zhou ◽  
Yan Su ◽  
Qiang Sun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document