virtual screening experiment
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
EIICHI AKAHO

Objective: Over the last 30 y cancer epigenetics research has grown extensively. It is note-worthy to recognize that epigenetic misregulation could substantiate the development of cancer and we need to continue to look for anti-neoplastic epi-drugs. Taking into consideration this phenomenon, our first aim is to search for an effective epi-drugs by virtual screening from ZINC database and to explore the validity of the virtual screening. The second aim is to explore a binding conformation of the top affinity ligands against macromolecules, by docking experiment. Methods: The virtual screening was conducted by our Virtual Screening by Docking (VSDK) algorithm and procedure. Small molecules were randomly downloaded by ZINC database. For docking experiment, AutoDock 4.2.6 and AutoDock Tool were used. Results: It took eight to ten hours for the successful virtual screening of the 2778 small compounds retrieved at random from ZINC database. Among histone H2B E76K mutant (HHEM) inhibitors and DNA methyltransferase (DNMT) inhibitors, the first ranked inhibitors were 1H-1,2,4-triazole-3,5-diamine and 2-ethyl-1,3,4-oxadiazole respectively. Conclusion: As for the molecular structures obtained from virtual screening, most of the top ten HHEM and DNMT inhibitors contained 5-member rings. More than two times in affinity difference between the top and bottom ten compounds would indicate a successful virtual screening experiment. The histogram chart of AutoDock4 runs appeared in the lowest affinity region with two or three hydrogen bonds indicating a reliable conformation docking.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3003
Author(s):  
Marko Jukič ◽  
Blaž Škrlj ◽  
Gašper Tomšič ◽  
Sebastian Pleško ◽  
Črtomir Podlipnik ◽  
...  

COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the “In-Stock” chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial “corona focused libraries”.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Meng-yu Wang ◽  
Peng Li ◽  
Pei-li Qiao

Using the theory of machine learning to assist the virtual screening (VS) has been an effective plan. However, the quality of the training set may reduce because of mixing with the wrong docking poses and it will affect the screening efficiencies. To solve this problem, we present a method using the ensemble learning to improve the support vector machine to process the generated protein-ligand interaction fingerprint (IFP). By combining multiple classifiers, ensemble learning is able to avoid the limitations of the single classifier’s performance and obtain better generalization. According to the research of virtual screening experiment with SRC and Cathepsin K as the target, the results show that the ensemble learning method can effectively reduce the error because the sample quality is not high and improve the effect of the whole virtual screening process.


Sign in / Sign up

Export Citation Format

Share Document