scholarly journals Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment

2020 ◽  
Vol 100 ◽  
pp. 107697 ◽  
Author(s):  
Kerem Teralı ◽  
Buket Baddal ◽  
Hayrettin Ozan Gülcan
Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3003
Author(s):  
Marko Jukič ◽  
Blaž Škrlj ◽  
Gašper Tomšič ◽  
Sebastian Pleško ◽  
Črtomir Podlipnik ◽  
...  

COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the “In-Stock” chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial “corona focused libraries”.


2019 ◽  
Vol 20 (18) ◽  
pp. 4648 ◽  
Author(s):  
Nathalie Lagarde ◽  
Elodie Goldwaser ◽  
Tania Pencheva ◽  
Dessislava Jereva ◽  
Ilza Pajeva ◽  
...  

Chemical biology and drug discovery are complex and costly processes. In silico screening approaches play a key role in the identification and optimization of original bioactive molecules and increase the performance of modern chemical biology and drug discovery endeavors. Here, we describe a free web-based protocol dedicated to small-molecule virtual screening that includes three major steps: ADME-Tox filtering (via the web service FAF-Drugs4), docking-based virtual screening (via the web service MTiOpenScreen), and molecular mechanics optimization (via the web service AMMOS2 [Automatic Molecular Mechanics Optimization for in silico Screening]). The online tools FAF-Drugs4, MTiOpenScreen, and AMMOS2 are implemented in the freely accessible RPBS (Ressource Parisienne en Bioinformatique Structurale) platform. The proposed protocol allows users to screen thousands of small molecules and to download the top 1500 docked molecules that can be further processed online. Users can then decide to purchase a small list of compounds for in vitro validation. To demonstrate the potential of this online-based protocol, we performed virtual screening experiments of 4574 approved drugs against three cancer targets. The results were analyzed in the light of published drugs that have already been repositioned on these targets. We show that our protocol is able to identify active drugs within the top-ranked compounds. The web-based protocol is user-friendly and can successfully guide the identification of new promising molecules for chemical biology and drug discovery purposes.


Author(s):  
EIICHI AKAHO

Objective: Over the last 30 y cancer epigenetics research has grown extensively. It is note-worthy to recognize that epigenetic misregulation could substantiate the development of cancer and we need to continue to look for anti-neoplastic epi-drugs. Taking into consideration this phenomenon, our first aim is to search for an effective epi-drugs by virtual screening from ZINC database and to explore the validity of the virtual screening. The second aim is to explore a binding conformation of the top affinity ligands against macromolecules, by docking experiment. Methods: The virtual screening was conducted by our Virtual Screening by Docking (VSDK) algorithm and procedure. Small molecules were randomly downloaded by ZINC database. For docking experiment, AutoDock 4.2.6 and AutoDock Tool were used. Results: It took eight to ten hours for the successful virtual screening of the 2778 small compounds retrieved at random from ZINC database. Among histone H2B E76K mutant (HHEM) inhibitors and DNA methyltransferase (DNMT) inhibitors, the first ranked inhibitors were 1H-1,2,4-triazole-3,5-diamine and 2-ethyl-1,3,4-oxadiazole respectively. Conclusion: As for the molecular structures obtained from virtual screening, most of the top ten HHEM and DNMT inhibitors contained 5-member rings. More than two times in affinity difference between the top and bottom ten compounds would indicate a successful virtual screening experiment. The histogram chart of AutoDock4 runs appeared in the lowest affinity region with two or three hydrogen bonds indicating a reliable conformation docking.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Meng-yu Wang ◽  
Peng Li ◽  
Pei-li Qiao

Using the theory of machine learning to assist the virtual screening (VS) has been an effective plan. However, the quality of the training set may reduce because of mixing with the wrong docking poses and it will affect the screening efficiencies. To solve this problem, we present a method using the ensemble learning to improve the support vector machine to process the generated protein-ligand interaction fingerprint (IFP). By combining multiple classifiers, ensemble learning is able to avoid the limitations of the single classifier’s performance and obtain better generalization. According to the research of virtual screening experiment with SRC and Cathepsin K as the target, the results show that the ensemble learning method can effectively reduce the error because the sample quality is not high and improve the effect of the whole virtual screening process.


1989 ◽  
Vol 86 ◽  
pp. 945-954 ◽  
Author(s):  
F. Bayard ◽  
D. Decoret ◽  
D. Pattou ◽  
J. Royer ◽  
A. Satrallah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document